Thống kê cân nặng của học sinh lớp 11A cho trong bảng dưới đây:
|
Cân nặng |
\(\left[ {40,5;45,5} \right)\) |
\(\left[ {45,5;50,5} \right)\) |
\(\left[ {50,5;55,5} \right)\) |
\(\left[ {55,5;60,5} \right)\) |
\(\left[ {60,5;65,5} \right)\) |
\(\left[ {65,5;70,5} \right)\) |
|
Số học sinh |
\(10\) |
\(7\) |
\(16\) |
\(4\) |
\(2\) |
\(3\) |
Tính cân nặng trung bình của học sinh lớp 11A?
Câu hỏi trong đề: Đề kiểm tra Cuối chương 3 (có lời giải) !!
Quảng cáo
Trả lời:
Trong mỗi khoảng cân nặng, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:
|
Cân nặng (kg) |
\(43\) |
\(48\) |
\(53\) |
\(58\) |
\(63\) |
\(68\) |
|
Số học sinh |
\(10\) |
\(7\) |
\(16\) |
\(4\) |
\(2\) |
\(3\) |
Tổng số học sinh là \(n = 42.\)
Cân nặng trung bình của học sinh lớp 11A là: \(\bar x = \frac{{10.43 + 7.48 + 16.53 + 4.58 + 2.63 + 3.68}}{{42}} \approx 51,81\) kg.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lập lại mẫu số liệu ghép nhóm theo giá trị đại diện, ta được:
|
Giá trị đại diện |
\(6,5\) |
\(7,5\) |
\(8,5\) |
\(9,5\) |
\(10,5\) |
|
Học sinh lớp \(10A\) |
\(8\) |
\(10\) |
\(13\) |
\(10\) |
\(9\) |
|
Học sinh lớp \(10B\) |
\(4\) |
\(12\) |
\(17\) |
\(14\) |
\(3\) |
Ta có:
Cỡ mẫu: \(n = 50\)
Xét số liệu của lớp \(10A\):
Số trung bình: \({\overline x _{10A}} = \frac{{8.6,5 + 10.7,5 + 13.8,5 + 10.9,5 + 9.10,5}}{{50}} = 8,54\).
Độ lệch chuẩn: \({\sigma _{10A}} = \sqrt {\frac{{{{8.6,5}^2} + {{10.7,5}^2} + {{13.8,5}^2} + {{10.9,5}^2} + {{9.10,5}^2}}}{{50}} - {{8,54}^2}} \approx 1,33\).
Xét số liệu của lớp \(10B\):
Số trung bình: \({\overline x _{10B}} = \frac{{4.6,5 + 12.7,5 + 17.8,5 + 14.9,5 + 3.10,5}}{{50}} = 8,5\).
Độ lệch chuẩn: \({\sigma _{10B}} = \sqrt {\frac{{{{4.6,5}^2} + {{12.7,5}^2} + {{17.8,5}^2} + {{14.9,5}^2} + {{3.10,5}^2}}}{{50}} - {{8,5}^2}} \approx 1,04\).
Do đó \({\sigma _{10A}} - {\sigma _{10B}} \approx 1,33 - 1,04 = 0,29\).
Câu 2
A. \({Q_1} = \frac{{136}}{5}\,,\,{Q_3} = \frac{{800}}{{21}}\).
B. \({Q_1} = \frac{{1360}}{{37}}\,,\,{Q_3} = \frac{{800}}{{21}}\).
C. \({Q_1} = \frac{{1360}}{{37}}\,,\,{Q_3} = \frac{{3280}}{{83}}\).
D. \({Q_1} = \frac{{136}}{5}\,,\,{Q_3} = \frac{{3280}}{{83}}\).
Lời giải
Cỡ mẫu \(n = 128\)
Gọi \({x_1};{x_2}; \ldots ;{x_{128}}\) là mẫu số liệu gốc về thời gian đi từ nhà đến nơi làm việc của các nhân viên của một công ty được xếp theo thứ tự không giảm.
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{{{x_{32}} + {x_{33}}}}{2} \in [25;30)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 25 + \frac{{\frac{{128}}{4} - \left( {7 + 14} \right)}}{{25}}*(30 - 25) = \frac{{136}}{5}\).
Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{{{x_{96}} + {x_{97}}}}{2} \in [35\,;\,40)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 35 + \frac{{\frac{{3*128}}{4} - \left( {7 + 14 + 25 + 37} \right)}}{{21}}*(40 - 35) = \frac{{800}}{{21}}\).chọn D
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.