Câu hỏi:

05/10/2025 6 Lưu

Phương sai của một mẫu số liệu ghép nhóm cho bởi bảng thống kê dưới đây là:

A white rectangular grid with black numbers

Description automatically generated

A. \(13,24\)                 
B. \(15,74\)               
C. \(18,84\)               
D. \(14,84\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có chiều cao trung bình:

\[\overline x  = \frac{1}{{500}}\left( {152.25 + 156.50 + 160.200 + 164.175 + 168.50} \right) = 161,4\]

Phương sai của mẫu số liệu ghép nhóm là: \[{S^2}\, = \frac{1}{{500}}\left[ {25{{\left( {152 - 161,4} \right)}^2} + 50{{\left( {156 - 161,4} \right)}^2} + 200{{\left( {160 - 161,4} \right)}^2} + 175{{\left( {164 - 161,4} \right)}^2} + 50{{\left( {168 - 161,4} \right)}^2}} \right]\]

\[ = 14,84\].CHỌN D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giá trị đại diện

5,5

6,5

7,5

8,5

9,5

Số học sinh lớp 10A

1

0

11

22

6

Số học sinh lớp 10B

0

6

8

14

12

 Xét mẫu số liệu của lớp 10A:

+ Số trung bình của mẫu số liệu ghép nhóm là

\(\overline {{x_A}}  = \frac{{1.5,5 + 0.6,5 + 11.7,5 + 22.8,5 + 6.9,5}}{{40}} = 8,3\).

+ Phương sai của mẫu số liệu ghép nhóm là

\(S_A^2 = \frac{1}{{40}}\left( {{{1.5,5}^2} + {{0.6,5}^2} + {{11.7,5}^2} + {{22.8,5}^2} + {{6.9,5}^2}} \right) - {8,3^2} = 0,61\).

+ Độ lệch chuẩn của mẫu số liệu ghép nhóm là \({S_A} = \sqrt {0,61} \)

Xét mẫu số liệu của lớp 10B:

+ Số trung bình của mẫu số liệu ghép nhóm là

\(\overline {{x_B}}  = \frac{{0.5,5 + 6.6,5 + 8.7,5 + 14.8,5 + 12.9,5}}{{40}} = 8,3\).

+ Phương sai của mẫu số liệu ghép nhóm là

\(S_B^2 = \frac{1}{{40}}\left( {{{0.5,5}^2} + {{6.6,5}^2} + {{8.7,5}^2} + {{14.8,5}^2} + {{12.9,5}^2}} \right) - {8,3^2} = 1,06\).

+ Độ lệch chuẩn của mẫu số liệu ghép nhóm là \({S_B} = \sqrt {1,06} \).

Do \({S_A} < {S_B}\) nên nếu so sánh theo độ lệch chuẩn thì học sinh lớp 10A có điểm trung bình ít phân tán hơn học sinh lớp 10B.

 

Lời giải

a) Cỡ mẫu: \(n = 5 + 10 + 30 + 45 + 30 = 120\).

Tần suất của nhóm vận động viên chạy trong khoảng thời gian từ \(22\)giây đến dưới \(22,5\) giây bằng: \({f_3} = \frac{{{n_3}}}{n} = \frac{{30}}{{120}} = 25\% \).

Vậy mệnh đề a) sai.

b) Gọi \({x_1},{x_2},\,...\,,{x_{120}}\) là thời gian chạy của 120 vận động viên và dãy này là một dãy không giảm.

Khi đó trung vị là \(\frac{{{x_{60}} + {x_{61}}}}{2}\). Do \({x_{60}},\,{x_{61}} \in \left[ {22,5;\,23} \right)\) nên nhóm này chứa trung vị. Ta có:

                      \({M_e} = 22,5 + \frac{{\frac{{120}}{2} - \left( {5 + 10 + 30} \right)}}{{45}}.\left( {23 - 22,5} \right) \approx 22,67\).

Vậy mệnh đề b) đúng.

c) Khoảng biến thiên của mẫu số liệu bằng : \(R = 23,5 - 21 = 2,5\).

Vậy mệnh đề c) sai.

d) Giá trị trung bình của mẫu số liệu là:

                      \(\bar x = \frac{{5.21,25 + 10.21,75 + 30.22,25 + 45.22,75 + 30.23,25}}{{120}} \approx 22,60\).

Độ lệch chuẩn của mẫu số liệu (làm tròn đến chữ số thập phân thứ 2) bằng

                      \(s = \sqrt {\frac{{5{{\left( { - 1,35} \right)}^2} + 10{{\left( { - 0,85} \right)}^2} + 30{{\left( { - 0,35} \right)}^2} + 45{{\left( {0,15} \right)}^2} + 30{{\left( {0,65} \right)}^2}}}{{120}}}  \approx 0,53\).

Vậy mệnh đề d) sai.