Câu hỏi:

05/10/2025 72 Lưu

Thầy Niên thống kê lại điểm trung bình cuối năm của các học sinh lớp 10A và 10B ở bảng sau.

Điểm trung bình

[5;6)

[6;7)

[7;8)

[8;9)

[9;10)

Số học sinh lớp 10A

1

0

11

22

6

Số học sinh lớp 10B

0

6

8

14

12

Nếu so sánh theo độ lệch chuẩn thì học sinh lớp nào có điểm trung bình ít phân tán hơn?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giá trị đại diện

5,5

6,5

7,5

8,5

9,5

Số học sinh lớp 10A

1

0

11

22

6

Số học sinh lớp 10B

0

6

8

14

12

 Xét mẫu số liệu của lớp 10A:

+ Số trung bình của mẫu số liệu ghép nhóm là

\(\overline {{x_A}}  = \frac{{1.5,5 + 0.6,5 + 11.7,5 + 22.8,5 + 6.9,5}}{{40}} = 8,3\).

+ Phương sai của mẫu số liệu ghép nhóm là

\(S_A^2 = \frac{1}{{40}}\left( {{{1.5,5}^2} + {{0.6,5}^2} + {{11.7,5}^2} + {{22.8,5}^2} + {{6.9,5}^2}} \right) - {8,3^2} = 0,61\).

+ Độ lệch chuẩn của mẫu số liệu ghép nhóm là \({S_A} = \sqrt {0,61} \)

Xét mẫu số liệu của lớp 10B:

+ Số trung bình của mẫu số liệu ghép nhóm là

\(\overline {{x_B}}  = \frac{{0.5,5 + 6.6,5 + 8.7,5 + 14.8,5 + 12.9,5}}{{40}} = 8,3\).

+ Phương sai của mẫu số liệu ghép nhóm là

\(S_B^2 = \frac{1}{{40}}\left( {{{0.5,5}^2} + {{6.6,5}^2} + {{8.7,5}^2} + {{14.8,5}^2} + {{12.9,5}^2}} \right) - {8,3^2} = 1,06\).

+ Độ lệch chuẩn của mẫu số liệu ghép nhóm là \({S_B} = \sqrt {1,06} \).

Do \({S_A} < {S_B}\) nên nếu so sánh theo độ lệch chuẩn thì học sinh lớp 10A có điểm trung bình ít phân tán hơn học sinh lớp 10B.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong mỗi khoảng cân nặng, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:

Cân nặng (kg)

\(43\)

\(48\)

\(53\)

\(58\)

\(63\)

\(68\)

Số học sinh

\(10\)

\(7\)

\(16\)

\(4\)

\(2\)

\(3\)

Tổng số học sinh là \(n = 42.\)

Cân nặng trung bình của học sinh lớp 11A là: \(\bar x = \frac{{10.43 + 7.48 + 16.53 + 4.58 + 2.63 + 3.68}}{{42}} \approx 51,81\) kg.

Lời giải

Lập lại mẫu số liệu ghép nhóm theo giá trị đại diện, ta được:

Giá trị đại diện

\(6,5\)

\(7,5\)

\(8,5\)

\(9,5\)

\(10,5\)

Học sinh lớp \(10A\)

\(8\)

\(10\)

\(13\)

\(10\)

\(9\)

Học sinh lớp \(10B\)

\(4\)

\(12\)

\(17\)

\(14\)

\(3\)

Ta có:

Cỡ mẫu: \(n = 50\)

Xét số liệu của lớp \(10A\):

Số trung bình: \({\overline x _{10A}} = \frac{{8.6,5 + 10.7,5 + 13.8,5 + 10.9,5 + 9.10,5}}{{50}} = 8,54\).

Độ lệch chuẩn: \({\sigma _{10A}} = \sqrt {\frac{{{{8.6,5}^2} + {{10.7,5}^2} + {{13.8,5}^2} + {{10.9,5}^2} + {{9.10,5}^2}}}{{50}} - {{8,54}^2}}  \approx 1,33\).

Xét số liệu của lớp \(10B\):

Số trung bình: \({\overline x _{10B}} = \frac{{4.6,5 + 12.7,5 + 17.8,5 + 14.9,5 + 3.10,5}}{{50}} = 8,5\).

Độ lệch chuẩn: \({\sigma _{10B}} = \sqrt {\frac{{{{4.6,5}^2} + {{12.7,5}^2} + {{17.8,5}^2} + {{14.9,5}^2} + {{3.10,5}^2}}}{{50}} - {{8,5}^2}}  \approx 1,04\).

Do đó \({\sigma _{10A}} - {\sigma _{10B}} \approx 1,33 - 1,04 = 0,29\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Khoảng biến thiên.    
B. Khoảng tứ phân vị.  
C.Trung vị.                  
D. Độ lệch chuẩn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP