Câu hỏi:

05/10/2025 3,621 Lưu

Cho tứ diện ABCD. Gọi \(M\) là điểm trên cạnh \(AB,N\) là điểm thuộc cạnh \(AC\) sao cho \(MN\) không song song với \(BC\). Gọi \(P\) là điểm nằm trong \(\Delta BCD\). Khi đó:

a) \(MN = (MNP) \cap (ABC)\)

b) Giao tuyến của hai mặt phẳng \((MNP),(BCD)\) là đường thẳng cắt \(BC\)

c) Giao tuyến của hai mặt phẳng \((MNP),(ABD)\) là đường thẳng cắt \(AB\)\(DC\)

d) Giao tuyến của hai mặt phẳng \((MNP),(ACD)\) là đường thẳng cắt \(AB\)\(DC\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Đúng

c) Sai

d) Sai

 

a) \(MN = (MNP) \cap (ABC)\)

b Trong \((ABC)\) gọi \(H = MN \cap BC\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{H \in MN \subset (MNP)}\\{H \in BC \subset (BCD)}\end{array} \Rightarrow H \in (MNP) \cap (BCD)} \right. & (1)\)

Lại có: \(\left\{ {\begin{array}{*{20}{l}}{P \in (MNP)}\\{P \in (BCD)}\end{array} \Rightarrow P \in (MNP) \cap (BCD)(2)} \right.\)

Từ (1) và (2) suy ra \(HP = (MNP) \cap (BCD)\)

Cho tứ diện ABCD. Gọi \(M\) là điểm trên cạnh \(AB,N\) là điểm thuộc cạnh \(AC\) sao cho \(MN\) không song song với \(BC\). Gọi \(P\) là điểm nằm trong \(\Delta BCD\). Khi đó: (ảnh 1)

c) Trong \((BCD)\) gọi \(K = HP \cap BD\)

Ta có: HMN(MNP)HBC(BCD)H(MNP)(BCD)(1)

Lại có: \(\left\{ {\begin{array}{*{20}{l}}{M \in (MNP)}\\{M \in AB \subset (ABD)}\end{array} \Rightarrow M \in (MNP) \cap (ABD)(2)} \right.\)

Từ (1) và (2) suy ra \(MK \in (MNP) \cap (ABD)\).

d) Trong \((BCD)\) gọi \(F = HK \cap DC\).

Trình bày tương tự như hai câu trên ta được \(NF = (MNP) \cap (ACD)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. giao điểm của \(MN\)với \(BC\).                    
B. giao điểm của \(MP\)với \(BC\).                 
C. giao điểm của \(MN\)với \(AB\).                    
D. giao điểm của \(MP\)với \(AC\).

Lời giải

Chọn C

Vậy giao điểm của \(MN\)với \(\left( {ABC} \right)\)là giao điểm của \(MN\)với \(AB\). (ảnh 1)

Trong \(\left( {SAB} \right)\),\(MN \cap AB = \left\{ I \right\} \Rightarrow \left\{ \begin{array}{l}I \in MN\\I \in AB \Rightarrow I \in \left( {ABC} \right)\end{array} \right.\)\[ \Rightarrow MN \cap \left( {ABC} \right) = \left\{ I \right\}\].

Vậy giao điểm của \(MN\)với \(\left( {ABC} \right)\)là giao điểm của \(MN\)với \(AB\).

Lời giải

Chọn D

Hai mặt phẳng \(\left( {SAB} \right)\)và \(\left( {SCD} \right)\)có hai điểm chung là \(S\)và \(E\)nên có giao tuyến là đường thẳng \(SE\).

Câu 3

A. \(I\)là giao điểm của \(CM\)với \(BD\).                      
B. \(J\)là giao điểm của \(CM\)với \(SO\)\(\left( {O = AC \cap BD} \right)\).              
C. \(H\)là giao điểm của \(CM\)với \(SB\).                     
D. \(N\)là giao điểm của \(CM\)với \(SD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP