Câu hỏi:

06/10/2025 345 Lưu

Cho tứ diện \(ABCD\). Gọi \(H\) là một điểm nằm trong tam giác \(ABC\), \((\alpha )\) là mặt phẳng đi qua \(H\) song song với \(AB\)\(CD\). Mệnh đề nào sau đây đúng về thiết diện của \((\alpha )\) và tứ diện?              

A. Thiết diện là hình vuông.                      
B. Thiết diện là hình thang cân.              
C. Thiết diện là hình bình hành.                
D. Thiết diện là hình chữ nhật.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

ABC) cắt \((\alpha )\) theo giao tu (ảnh 1)

ABC) cắt \((\alpha )\) theo giao tuyến MN đi qua H và song song với AB (\(M \in AC,N \in BC\))

(BCD) cắt \((\alpha )\) theo giao tuyến NP song song với CD (\(P \in BD\))

(ACD) cắt \((\alpha )\) theo giao tuyến MQ song song với CD (\(Q \in AD\))

(ABD) cắt \((\alpha )\) theo giao tuyến PQ song song với AB

Có MQ//NP (vì cùng song song CD)

Có MN//PQ (vì cùng song song AB)

Vậy thiết diện là hình bình hành MNPQ

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(G\) là trọng tâm của tam giác \(SAD,M\) là điểm trên đoạn \(DC\) sao cho \(DC = 3DM\). Chứng minh rằng \(MG//(SBC)\). (ảnh 1)

Gọi \(N\) là trung điểm của \(AD\). Ta có \(MG \subset (SMN)\).

Trong mặt phẳng \((ABCD)\), gọi \(E = MN \cap BC\).

Ta có \(S \in (SNM) \cap (SBC)\);\(E \in MN\)\(MN \subset (SMN)\);\(E \in BC\)\(BC \subset (SBC)\).

Suy ra \((SMN) \cap (SBC) = SE\).

Dễ thấy \(\Delta MND{\mathop{\rm cs}\nolimits} \Delta MEC\), suy ra \(\frac{{MN}}{{ME}} = \frac{{MD}}{{MC}} = \frac{1}{2}\), suy ra \(\frac{{MN}}{{NE}} = \frac{1}{3}\).(1)

Mặt khác, \(\frac{{GN}}{{SN}} = \frac{1}{3}\) (\(G\) là trọng tâm của tam giác \(\left. {SAD} \right)\). (2)

Từ (1) và (2) suy ra \(\frac{{GN}}{{SN}} = \frac{{MN}}{{NE}}\).

Theo định lí Thalès đảo trong tam giác \(SNE\), ta có \(MG//SE\).

\(SE \subset (SBC)\) nên \(MG//(SBC)\).

Lời giải

Cho hình chóp \(S.ABC\). Gọi \(I,J\) lần lượt là trung điểm của \(AB\) và \(BC\). Gọi \(H,K\) lần lượt là trọng tâm của \(\Delta SAB\) và \(\Delta SBC\). Khi đó:  a) \(AC//(SIJ)\). (ảnh 1)

a) Vì \(IJ\) là đường trung bình \(\Delta ABC\) nên \(IJ//AC\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AC//IJ}\\{IJ \subset (SIJ)}\\{AC\not \subset (SIJ)}\end{array} \Rightarrow AC//(SIJ)} \right.\).

b) Ta có \(\frac{{SH}}{{HI}} = \frac{{SK}}{{KJ}} = 2(H,K\) lần lượt là trọng tâm \(\Delta SAB\)\(\Delta SAC)\).

\( \Rightarrow HK//IJ\)

Lại có \(\left\{ {\begin{array}{*{20}{l}}{HK//AC(HK//IJ,AC//IJ)}\\{AC \subset (SAC)}\\{HK\not \subset (SAC)}\end{array} \Rightarrow HK//(SAC)} \right.\)

c) Ta có \(\left\{ {\begin{array}{*{20}{l}}{HK//AC}\\{HK \subset (BHK)}\\{AC \subset (ABC)}\\{B \in (BHK) \cap (ABC)}\end{array}} \right.\)

Vậy giao tuyến của \((BHK)\)\((ABC)\) là đường thẳng \(Bx\) đi qua \(B\) và song song với \(AC\)\(HK\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP