Cho hình chóp \[S.ABCD\]có đáy \[ABCD\]là hình bình hành tâm \[O\]. Gọi \[M,\,\,N,\,\,P\]theo thứ tự là trung điểm của \[SA,\,\,SD\]và \[AB\]. Khẳng định nào sau đây đúng?
Câu hỏi trong đề: Đề kiểm tra Hai mặt phẳng song song (có lời giải) !!
Quảng cáo
Trả lời:
Chọn A
![Lại có \[MP\]\({\rm{//}}\)\[SB,\,\,\,OP\]\({\rm (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/4-1759695089.png)
Ta có \[MN\]là đường trung bình của tam giác \[SAD\]suy ra \[MN\]\({\rm{//}}\)\[AD\]\[\,\left( 1 \right)\]
Và \[OP\]là đường trung bình của tam giác \[BAD\]suy ra \[OP\]\({\rm{//}}\)\[AD\]\[\,\left( 2 \right)\]
Từ \[\left( 1 \right),\left( 2 \right)\]suy ra \[MN\]\({\rm{//}}\)\[OP\]\({\rm{//}}\)\[AD\]\[ \Rightarrow \,\,M,\,\,N,\,\,O,\,\,P\]đồng phẳng.
Lại có \[MP\]\({\rm{//}}\)\[SB,\,\,\,OP\]\({\rm{//}}\)\[BC\]suy ra \[\left( {MNOP} \right)\]\({\rm{//}}\)\[\left( {SBC} \right)\]hay \[\left( {MON} \right)\]\({\rm{//}}\)\[\left( {SBC} \right)\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(EF\) là đường trung bình của tam giác \(SAD\) nên \(EF//SD\). Vì \(EF\) không nằm trong mặt phẳng \((SCD)\) nên \(EF//(SCD)\).
Vì \(FG\) là đường trung bình của hình thang \(ABCD\) nên \(FG//CD\). Vì \(FG\) không nằm trong mặt phẳng \((SCD)\) nên \(FG//(SCD)\).
Mặt phẳng \((EFG)\) chứa hai đường thẳng cắt nhau \(EF\) và \(FG\) cùng song song với mặt phẳng \((SCD)\) nên mặt phẳng \((EFG)\) song song với mặt phẳng \((SCD)\).
Câu 2
Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang với đáy lớn \(AD\). Gọi \(M\) là trọng tâm của tam giác \(SAD,N\) là điểm thuộc đoạn thẳng \(AC\) sao cho \(AN = \frac{1}{3}AC,P\) là điểm thuộc đoạn thẳng \(CD\) sao cho \(DP = \frac{1}{3}DC\). Chứng minh rằng \((MNP)//(SBC)\).
Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang với đáy lớn \(AD\). Gọi \(M\) là trọng tâm của tam giác \(SAD,N\) là điểm thuộc đoạn thẳng \(AC\) sao cho \(AN = \frac{1}{3}AC,P\) là điểm thuộc đoạn thẳng \(CD\) sao cho \(DP = \frac{1}{3}DC\). Chứng minh rằng \((MNP)//(SBC)\).
Lời giải

Gọi \(E\) là trung điểm của \(AD\) và \(I\) là giao điểm của \(NP\) và \(EC\).
Ta có \(\frac{{AN}}{{AC}} = \frac{{DP}}{{CP}} = \frac{1}{3}\) nên \(NP//AD\). Do \(AD//BC\) nên \(NP//BC\), suy ra \(NP//(SBC)\).
Vì \(NP//AD\) nên ta có \(\frac{{EI}}{{EC}} = \frac{{AN}}{{AC}} = \frac{1}{3}\).
Do \(M\) là trọng tâm của tam giác \(SAD\) và \(E\) trung điểm của đoạn \(AD\) nên \(M \in SE\) và \(\frac{{EM}}{{ES}} = \frac{1}{3}\). Như vậy \(\frac{{EI}}{{EC}} = \frac{{EM}}{{ES}}\) nên \(MI//SC\), suy ra \(MI//(SBC)\). Từ đó, ta có \((MNP)//(SBC)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
