Câu hỏi:

06/10/2025 9 Lưu

Tìm khẳng định đúng trong các khẳng định sau:

A. Nếu hai mặt phẳng cùng song song với một mặt phẳng khác thì chúng song song với nhau.              
B. Nếu ba mặt phẳng phân biệt đôi một cắt nhau theo ba giao tuyến thì ba giao tuyến đó đồng quy.              
C. Nếu đường thẳng \(a\) song song với mặt phẳng \(\left( P \right)\) thì \(a\) song song với một đường thẳng nào đó nằm trong \(\left( P \right)\).              
D. Cho hai đường thẳng \(a\), \(b\) nằm trong mặt phẳng \(\left( P \right)\) và hai đường thẳng \(a'\), \(b'\) nằm trong mặt phẳng \(\left( Q \right)\). Khi đó, nếu \(a\,{\rm{//}}\,a'\); \(b\,{\rm{//}}\,b'\) thì \(\left( P \right)\,{\rm{//}}\,\left( Q \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

         Tìm khẳng định đúng trong các khẳng định sau: (ảnh 1)    Tìm khẳng định đúng trong các khẳng định sau: (ảnh 2)

Đáp án A sai vì hai mặt phẳng đó có thể trùng nhau.

Đáp án B sai vì ba mặt phẳng phân biệt đôi một cắt nhau theo ba giao tuyến thì ba giao tuyến đó hoặc đồng quy hoặc đôi một song song hoặc trùng nhau (lý thuyết).

Đáp án C đúng. Ta chọn mặt phẳng \(\left( \alpha  \right)\) chứa \(a\) và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến \(d\) thì \(d \subset \left( P \right)\) và \(a\,{\rm{//}}\,d\) (Hình 1).

Đáp án D sai vì ta có thể lấy hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) thỏa \(a\), \(b\) nằm trong mặt phẳng \(\left( P \right)\); \(a'\), \(b'\) nằm trong mặt phẳng \(\left( Q \right)\) với \(a\,{\rm{//}}\,b\,{\rm{//}}\,a'\,{\rm{//}}\,b'\) mà hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) cắt nhau (Hình 2).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Sai

 

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(H,I,K\) lần lượt là trung điểm của \(SA,SB,SC\). Gọi \(M\) là giao điểm củ (ảnh 1)

a) b) Vì \(HI\) là đường trung bình của tam giác \(SAB\) nên \(HI//AB\),

\(AB \subset (ABCD) \Rightarrow HI//(ABCD)\). (1)

Tương tự ta có: \(KI//BC,BC \subset (ABCD) \Rightarrow KI//(ABCD)\). (2)

Mặt khác: \(HI \subset (HKI),KI \subset (HKI),HI \cap KI = I\). (3)

Từ (1), (2) và (3) suy ra \((HIK)//(ABCD)\).

c) d)

\(\begin{array}{l}{\rm{ V\`i }}\left\{ {\begin{array}{*{20}{l}}{M \in AI,AI \subset (SAB)}\\{M \in DK,DK \subset (SCD)}\end{array} \Rightarrow M \in (SAB) \cap (SCD)} \right.\\ \Rightarrow SM = (SAB) \cap (SCD).\end{array}\)

\(\begin{array}{l}{\rm{ Khi d\'o : }}\left\{ {\begin{array}{*{20}{l}}{(SAB) \cap (SCD) = SM}\\{AB \subset (SAB),CD \subset (SCD) \Rightarrow SM//AB//CD \Rightarrow SM//HI}\\{AB//CD}\end{array}} \right.(1)\\{\rm{ V\`i }}\left\{ {\begin{array}{*{20}{l}}{N \in DH,DH \subset (SAD)}\\{N \in CI,CI \subset (SBC)}\end{array} \Rightarrow N \in (SAD) \cap (SBC)} \right.\\ \Rightarrow SN = (SAD) \cap (SBC).\end{array}\)

Khi đó, ta có:

\(\left\{ {\begin{array}{*{20}{l}}{(SAD) \cap (SBC) = SN}\\{AD \subset (SAD),BC \subset (SBC) \Rightarrow SN//AD//BC \Rightarrow SN//KI}\\{AD//BC}\end{array}} \right.(2)\)

Mặt khác ba điểm \(S,M,N\) không thẳng hàng. (3)

Từ (1), (2), (3) suy ra \((SMN)//(HIK)\).

Câu 2

A. Vô số.                   
B. \[3\].                    
C. \(2\).                           
D. \(1\).

Lời giải

Chọn A

Có bao nhiêu mặt phẳng song song với cả hai đường thẳng chéo nhau? 	 (ảnh 1)

Gọi hai đường thẳng chéo nhau là \[a\]và \[b\], \[c\] là đường thẳng song song với \[a\] và cắt \[b\].

Gọi mặt phẳng \[\left( \alpha  \right) \equiv \left( {b,c} \right)\]. Do \[a{\rm{//}}c \Rightarrow a{\rm{//}}\left( \alpha  \right)\]

Giải sử mặt phẳng \[\left( \beta  \right){\rm{//}}\left( \alpha  \right)\] mà \[b \subset \left( \alpha  \right) \Rightarrow b{\rm{//}}\left( \beta  \right)\]

Mặt khác \[a{\rm{//}}\left( \alpha  \right) \Rightarrow a{\rm{//}}\left( \beta  \right)\]. Có vô số mặt phẳng \[\left( \beta  \right){\rm{//}}\left( \alpha  \right)\]

nên có vô số mặt phẳng song song với cả hai đường thẳng chéo nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang với đáy lớn \(AD\). Gọi \(M\) là trọng tâm của tam giác \(SAD,N\) là điểm thuộc đoạn thẳng \(AC\) sao cho \(AN = \frac{1}{3}AC,P\) là điểm thuộc đoạn thẳng \(CD\) sao cho \(DP = \frac{1}{3}DC\). Chứng minh rằng \((MNP)//(SBC)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP