Câu hỏi:

06/10/2025 46 Lưu

Cầu thang xương cá là dạng cầu thang có hình dáng tương tự như những đốt xương cá, thường có những bậc cầu thang với khoảng mở lớn, tạo được sự nhẹ nhàng và thoáng đãng cho không gian sống. Trong Hình 4.55, phần mép của mỗi bậc thang nằm trên tường song song với nhau. Hãy giải thích tại sao.

Cầu thang xương cá là dạng cầu thang có hình dáng tương tự như những đốt xương cá, thường có những bậc cầu thang với khoảng mở lớn, tạo được sự nhẹ nhàng và thoáng đãng cho không gian sống. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Các bậc cầu thang là các mặt phẳng song song với nhau từng đôi một, mặt phẳng tường cắt mỗi mặt phẳng là các bậc của cầu thang theo các giao tuyến là phần mép của mỗi bậc cầu thang nằm trên tường nên các giao tuyến này song song với nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(EF\) là đường trung bình của tam giác \(SAD\) nên \(EF//SD\). Vì \(EF\) không nằm trong mặt phẳng \((SCD)\) nên \(EF//(SCD)\).

\(FG\) là đường trung bình của hình thang \(ABCD\) nên \(FG//CD\). Vì \(FG\) không nằm trong mặt phẳng \((SCD)\) nên \(FG//(SCD)\).

Mặt phẳng \((EFG)\) chứa hai đường thẳng cắt nhau \(EF\)\(FG\) cùng song song với mặt phẳng \((SCD)\) nên mặt phẳng \((EFG)\) song song với mặt phẳng \((SCD)\).

Câu 2

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang với đáy lớn \(AD\). Gọi \(M\) là trọng tâm của tam giác \(SAD,N\) là điểm thuộc đoạn thẳng \(AC\) sao cho \(AN = \frac{1}{3}AC,P\) là điểm thuộc đoạn thẳng \(CD\) sao cho \(DP = \frac{1}{3}DC\). Chứng minh rằng \((MNP)//(SBC)\).

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vớ (ảnh 1)

Gọi \(E\) là trung điểm của \(AD\)\(I\) là giao điểm của \(NP\)\(EC\).

Ta có \(\frac{{AN}}{{AC}} = \frac{{DP}}{{CP}} = \frac{1}{3}\) nên \(NP//AD\). Do \(AD//BC\) nên \(NP//BC\), suy ra \(NP//(SBC)\).

\(NP//AD\) nên ta có \(\frac{{EI}}{{EC}} = \frac{{AN}}{{AC}} = \frac{1}{3}\).

Do \(M\) là trọng tâm của tam giác \(SAD\)\(E\) trung điểm của đoạn \(AD\) nên \(M \in SE\)\(\frac{{EM}}{{ES}} = \frac{1}{3}\). Như vậy \(\frac{{EI}}{{EC}} = \frac{{EM}}{{ES}}\) nên \(MI//SC\), suy ra \(MI//(SBC)\). Từ đó, ta có \((MNP)//(SBC)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP