Qua phép chiếu song song lên mặt phẳng \[\left( P \right)\], hai đường thẳng a và b có hình chiếu là hai đường thẳng song song \[a'\] và \[b'\]. Khi đó:
Câu hỏi trong đề: Đề kiểm tra Phép chiếu song song (có lời giải) !!
Quảng cáo
Trả lời:
Chọn C
Nếu \[a'{\rm{//}}b'\] thì \[mp\left( {a,a'} \right){\rm{//}}mp\left( {b,b'} \right)\]. Bởi vậy a và b có thể chéo nhau hoặc song song với nhau.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D
![\alpha \right)\] và \[\left( \beta \right)\] cắt nhau thì \[a'\] và \[b'\] căt nhau, nếu \[\left( \alpha \right)\] và \[\left( \beta \right)\] song song thì \[a'\] và \[b'\] song song. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/3-1759720546.png)
Gọi \[l\] là phương chiếu, \[\left( \alpha \right)\] và \[\left( \beta \right)\] là các mặt phẳng song song với \[l\] và lần lượt đi qua \[a\] và \[b\]. Khi đó nếu \[\left( \alpha \right)\] và \[\left( \beta \right)\] cắt nhau thì \[a'\] và \[b'\] căt nhau, nếu \[\left( \alpha \right)\] và \[\left( \beta \right)\] song song thì \[a'\] và \[b'\] song song.
Lời giải
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |

a) Trong mặt phẳng \((SAC)\) kẻ \(SN\) song song \(OM\) với \(N\) thuộc \(AC\). Khi đó \(N\) thuộc mặt phẳng \((ABCD)\) nên \(N\) là hình chiếu song song của \(S\) lên mặt phẳng \((ABCD)\) theo phương \(OM\).
b) c) d) Tam giác \(SAN\) có \(OM//SN \Rightarrow \frac{{AM}}{{AS}} = \frac{{AO}}{{AN}} = \frac{2}{3}\) (định lí Thalès).
Suy ra \(\frac{{\frac{1}{2}AC}}{{AN}} = \frac{2}{3} \Rightarrow \frac{{AC}}{{AN}} = \frac{4}{3} \Rightarrow \frac{{AN}}{{AC}} = \frac{3}{4}\).
Vì vậy \(\frac{{CN}}{{CA}} = \frac{1}{4}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
