Câu hỏi:

06/10/2025 164 Lưu

Cho hình chóp S.ABCD có đáy là hình bình hành, trên cạnh \(SA\) lấy điểm \(M\) sao cho \(MA = 2MS\). Gọi \(O\) là tâm của hình bình hành \(ABCD\). Một phép chiếu song song theo phương \(MO\) lên mặt phẳng \((ABCD)\) biến điểm \(S\) thành điểm \(N\).

a) \(N\) là hình chiếu song song của \(S\) lên mặt phẳng \((ABCD)\) theo phương \(OM\).

b) \(\frac{{AO}}{{AN}} = \frac{1}{3}\)

c) \[\frac{{AN}}{{AC}} = 4\]

d) \(\frac{{CN}}{{CA}} = \frac{1}{4}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Sai

c) Sai

d) Đúng

 

Cho hình chóp S.ABCD có đáy là hình bình hành, trên cạnh SA lấy điểm M sao cho MA = 2MS (ảnh 1)

a) Trong mặt phẳng \((SAC)\) kẻ \(SN\) song song \(OM\) với \(N\) thuộc \(AC\). Khi đó \(N\) thuộc mặt phẳng \((ABCD)\) nên \(N\) là hình chiếu song song của \(S\) lên mặt phẳng \((ABCD)\) theo phương \(OM\).

b) c) d) Tam giác \(SAN\)\(OM//SN \Rightarrow \frac{{AM}}{{AS}} = \frac{{AO}}{{AN}} = \frac{2}{3}\) (định lí Thalès).

Suy ra \(\frac{{\frac{1}{2}AC}}{{AN}} = \frac{2}{3} \Rightarrow \frac{{AC}}{{AN}} = \frac{4}{3} \Rightarrow \frac{{AN}}{{AC}} = \frac{3}{4}\).

Vì vậy \(\frac{{CN}}{{CA}} = \frac{1}{4}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. a b phải song song với nhau.           
B. a b phải cắt nhau.              
C. a b có thể chéo nhau hoặc song song.                          
D. a b không thể song song.

Lời giải

Chọn C

Nếu \[a'{\rm{//}}b'\] thì \[mp\left( {a,a'} \right){\rm{//}}mp\left( {b,b'} \right)\]. Bởi vậy a và b có thể chéo nhau hoặc song song với nhau.

Câu 2

A. \[a'\]\[b'\] luôn luôn cắt nhau.              
B. \[a'\]\[b'\] có thể trùng nhau.              
C. \[a'\]\[b'\] không thể song song.              
D. \[a'\]\[b'\] có thể cắt nhau hoặc song song nhau.

Lời giải

Chọn D

\alpha  \right)\] và \[\left( \beta  \right)\] cắt nhau thì \[a'\] và \[b'\] căt nhau, nếu \[\left( \alpha  \right)\] và \[\left( \beta  \right)\] song song thì \[a'\] và \[b'\] song song. (ảnh 1)

Gọi \[l\] là phương chiếu, \[\left( \alpha  \right)\] và \[\left( \beta  \right)\] là các mặt phẳng song song với \[l\] và lần lượt đi qua \[a\] và \[b\]. Khi đó nếu \[\left( \alpha  \right)\] và \[\left( \beta  \right)\] cắt nhau thì \[a'\] và \[b'\] căt nhau, nếu \[\left( \alpha  \right)\] và \[\left( \beta  \right)\] song song thì \[a'\] và \[b'\] song song.

Câu 3

A. Trung điểm \(SB\).                               
B. Trung điểm \(SD\).              
C. Điểm \(D\).           
D. Trung điểm \(SA\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP