Câu hỏi:

06/10/2025 164 Lưu

Cho hình chóp S.ABCD với đáy ABCD là tứ giác lồi. Thiết diện của mặt phẳng \(\left( \alpha \right)\) tuỳ ý với hình chóp không thể là:

A. Lục giác.               
B. Ngũ giác.            
C. Tứ giác.                           
D. Tam giác.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Thiết diện của mặt phẳng với hình chóp là đa giác được tạo bởi các giao tuyến của mặt phẳng đó với mỗi mặt của hình chóp.

Hai mặt phẳng bất kì có nhiều nhất một giao tuyến.

Hình chóp tứ giác \(S.ABCD\) có 5 mặt nên thiết diện của \(\left( \alpha  \right)\) với \(S.ABCD\) có không qua 5 cạnh, không thể là hình lục giác 6 cạnh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lăng trụ \(ABC.A'B'C'\). \(M,N\) là trung điểm của \(A'C',BC\). Chứng minh \(MN\;{\rm{//}}\;\left( {ABB'A'} \right)\) (ảnh 1)

Trong \(\Delta ABC\): Gọi \(O\) là trung điểm của \(AB\);

Khi đó \(ON\) là đường trung bình \( \Rightarrow ON\;{\rm{//}}\; = \frac{1}{2}AC\) (1)

\[ACC'A'\] là hình bình hành \( \Rightarrow AC\;{\rm{//}}\; = A'C' \Rightarrow A'M\;{\rm{//}}\; = \frac{1}{2}AC\) (2)

\(ON\;{\rm{//}}\; = A'M \Rightarrow \) Từ giác \(A'ONM\) là hình bình hành

\( \Rightarrow \left\{ \begin{array}{l}MN\;{\rm{//}}\;A'O\\A'O \subset \left( {ABB'A'} \right)\end{array} \right. \Rightarrow MN\;{\rm{//}}\;\left( {ABB'A'} \right)\).

Câu 2

A. \[3\].                      
B. \[4\].                   
C. \[5\].                           
D. \[6\].

Lời giải

Chọn D

Hình tứ diện là hình chóp có số cạnh ít nhất.

Trong các hình chóp, hình chóp có ít cạnh nhất có số cạnh là bao nhiêu?  (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {CDM} \right)\).                       
B. \(\left( {ACM} \right)\).       
C. \(\left( {ADM} \right)\).                     
D. \(\left( {ACD} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP