Cho hình chóp S.ABCD với đáy ABCD là tứ giác lồi. Thiết diện của mặt phẳng \(\left( \alpha \right)\) tuỳ ý với hình chóp không thể là:
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương IV (có lời giải) !!
Quảng cáo
Trả lời:
Chọn A
Thiết diện của mặt phẳng với hình chóp là đa giác được tạo bởi các giao tuyến của mặt phẳng đó với mỗi mặt của hình chóp.
Hai mặt phẳng bất kì có nhiều nhất một giao tuyến.
Hình chóp tứ giác \(S.ABCD\) có 5 mặt nên thiết diện của \(\left( \alpha \right)\) với \(S.ABCD\) có không qua 5 cạnh, không thể là hình lục giác 6 cạnh.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Trong \(\Delta ABC\): Gọi \(O\) là trung điểm của \(AB\);
Khi đó \(ON\) là đường trung bình \( \Rightarrow ON\;{\rm{//}}\; = \frac{1}{2}AC\) (1)
\[ACC'A'\] là hình bình hành \( \Rightarrow AC\;{\rm{//}}\; = A'C' \Rightarrow A'M\;{\rm{//}}\; = \frac{1}{2}AC\) (2)
\(ON\;{\rm{//}}\; = A'M \Rightarrow \) Từ giác \(A'ONM\) là hình bình hành
\( \Rightarrow \left\{ \begin{array}{l}MN\;{\rm{//}}\;A'O\\A'O \subset \left( {ABB'A'} \right)\end{array} \right. \Rightarrow MN\;{\rm{//}}\;\left( {ABB'A'} \right)\).
Lời giải
|
a) Đúng |
b) Sai |
c) Sai |
d) Sai |
![Cho hình lăng trụ ABC.A'B'C'. Gọi \[H\] là trung điểm của \[A'B'.\] Các mệnh đề sau đúng hay sai? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/15-1759725256.png)
Gọi \[M\] là trung điểm của \[AB\] suy ra \(\left( 1 \right)\)
Vì \[MH\] là đường trung bình của hình bình hành \[ABB'A'\] suy ra \[MH\] song song và bằng \(BB'\) nên \[MH\] song song và bằng \[MHC'C\] là hình hình hành \(\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\), suy ra
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
