Cho hình lăng trụ ABC.A'B'C'. Gọi \[H\] là trung điểm của \[A'B'.\] Các mệnh đề sau đúng hay sai?
a) Đường thẳng \[B'C\] song song với mặt phẳng \(\left( {AHC'} \right).\)
b) Đường thẳng \[B'C\] song song với mặt phẳng \(\left( {AA'H} \right).\)
c) Đường thẳng \[B'C\] song song với mặt phẳng \(\left( {HAB} \right).\)
d) Đường thẳng \[B'C\] song song với mặt phẳng \(\left( {HA'C} \right).\)
Cho hình lăng trụ ABC.A'B'C'. Gọi \[H\] là trung điểm của \[A'B'.\] Các mệnh đề sau đúng hay sai?
a) Đường thẳng \[B'C\] song song với mặt phẳng \(\left( {AHC'} \right).\)
b) Đường thẳng \[B'C\] song song với mặt phẳng \(\left( {AA'H} \right).\)
c) Đường thẳng \[B'C\] song song với mặt phẳng \(\left( {HAB} \right).\)
d) Đường thẳng \[B'C\] song song với mặt phẳng \(\left( {HA'C} \right).\)
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương IV (có lời giải) !!
Quảng cáo
Trả lời:

a) Đúng |
b) Sai |
c) Sai |
d) Sai |
Gọi \[M\] là trung điểm của \[AB\] suy ra \(\left( 1 \right)\)
Vì \[MH\] là đường trung bình của hình bình hành \[ABB'A'\] suy ra \[MH\] song song và bằng \(BB'\) nên \[MH\] song song và bằng \[MHC'C\] là hình hình hành \(\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\), suy ra
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Thiết diện của mặt phẳng với hình chóp là đa giác được tạo bởi các giao tuyến của mặt phẳng đó với mỗi mặt của hình chóp.
Hai mặt phẳng bất kì có nhiều nhất một giao tuyến.
Hình chóp tứ giác \(S.ABCD\) có 5 mặt nên thiết diện của \(\left( \alpha \right)\) với \(S.ABCD\) có không qua 5 cạnh, không thể là hình lục giác 6 cạnh.
Lời giải
a) Sai |
b) Sai |
c) Sai |
d) Đúng |
Hai mặt phẳng phân biệt không song song với nhau thì chúng có duy nhất một giao tuyến.
a) sai. Nếu \(\left( P \right)\) và \(\left( Q \right)\) trùng nhau thì 2 mặt phẳng có vô số điểm chung. Khi đó, chưa đủ điều kiện để kết luận \(A,\;B,\;C\) thẳng hàng\[.\]
b) sai. Có vô số đường thẳng đi qua \(A\), khi đó \(B,\;C\) chưa chắc đã thuộc giao tuyến của \(\left( P \right)\) và \(\left( Q \right)\).
c) sai. Hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) phân biệt giao nhau tại 1 giao tuyến duy nhất, nếu 3 điểm \(A,\;B,\;C\) là 3 điểm chung của 2 mặt phẳng thì \(A,\;B,\;C\) cùng thuộc giao tuyến.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.