Trong mp\(\left( \alpha \right)\), cho bốn điểm \(A\), \(B\), \(C\), \(D\) trong đó không có ba điểm nào thẳng hàng. Điểm \(S \notin mp\left( \alpha \right)\). Có mấy mặt phẳng tạo bởi \(S\) và hai trong số bốn điểm nói trên?
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương IV (có lời giải) !!
Quảng cáo
Trả lời:
Lời giải
Chọn C
Điểm \(S\) cùng với hai trong số bốn điểm \(A\), \(B\), \(C\), \(D\) tạo thành một mặt phẳng, từ bốn điểm ta có \[6\] cách chọn ra hai điểm, nên có tất cả \[6\] mặt phẳng tạo bởi \(S\) và hai trong số bốn điểm nói trên.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
![Cho hình hộp \[ABCD.{A_1}{B_1}{C_1}{D_1}.\] Các mệnh đề sau đúng hay sai? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/5-1759726294.png)
Dựa vào hình vẽ và tính chất của hình hộp chữ nhật, ta thấy rằng:
Hình hộp có đáy \[ABCD\] là hình bình hành.
Các đường thẳng \[{A_1}C,\,\,A{C_1},\,\,D{B_1},\,\,{D_1}B\] cắt nhau tại tâm của \[A{A_1}{C_1}C,\,\,\,BD{D_1}{B_1}.\]
Hai mặt bên \(\left( {AD{D_1}{A_1}} \right),\,\,\left( {BC{C_1}{B_1}} \right)\) đối diện và song song với nhau.
\[A{D_1}\] và \[CB\] là hai đường thẳng chéo nhau suy ra \[A{D_1}CB\] không phải là hình chữ nhật.
Câu 2
Lời giải
Chọn B
Phép chiếu song song lên mặt phẳng không bảo toàn mối quan hệ giữa hai đường thẳng chéo nhau trong không gian.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.