Câu hỏi:

06/10/2025 59 Lưu

Cho hình hộp \(ABCD \cdot {A^\prime }{B^\prime }{C^\prime }{D^\prime }\) và một mặt phẳng \((\alpha )\) cắt các mặt của hình hộp theo các giao tuyến \(MN,NP,PQ\), \(QR,RS,SM\) như Hình 18.

Chứng minh các cặp cạnh đối của lục giác  song song với nhau. (ảnh 1)

Chứng minh các cặp cạnh đối của lục giác \(MNPQRS\) song song với nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Mặt phẳng \((\alpha )\) cắt hai mặt phẳng song song \[\left( {ABB'A'} \right)\]\[\left( {CDD'C'} \right)\]lần lượt tại \[NP\]\[SR\] nên \[NP//SR\]. Mặt phẳng \((\alpha )\) cắt hai mặt phẳng song song \[\left( {ADD'A'} \right)\]\[\left( {BDD'B'} \right)\]lần lượt tại \(MS\)\(PQ\) nên \(PQ//MS\). Mặt phẳng \((\alpha )\) cắt hai mặt phẳng song song \((ABCD)\)\(\left( {{A^\prime }{B^\prime }{C^\prime }{D^\prime }} \right)\) lần lượt tại \(MN\)\(QR\) nên \(MN//QR\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai

b) Đúng

c) Sai

d) Sai

Cho tứ diện ABCD. Gọi \(G\) là trọng tâm của tam giác \(ABD,{\mke (ảnh 1)

Gọi \(M\) là trung điểm của \(BD{\mkern 1mu} .\)

\(G\) là trọng tâm tam giác \(ABD\)\( \Rightarrow {\mkern 1mu} {\mkern 1mu} \frac{{AG}}{{AM}} = \frac{2}{3}.\)

Điểm \(Q \in AB\) sao cho \(AQ = 2{\mkern 1mu} QB{\mkern 1mu} {\mkern 1mu} \Leftrightarrow {\mkern 1mu} {\mkern 1mu} \frac{{AQ}}{{AB}} = \frac{2}{3}.\) Suy ra //\(BD{\mkern 1mu} .\)

Mặt khác \(BD\) nằm trong mặt phẳng \(\left( {BCD} \right)\) suy ra \(GQ\) // BCD.

Câu 4

A. \[\left( T \right)\]là hình chữ nhât.        
B. \[\left( T \right)\]là hình bình hành.
C. \[\left( T \right)\]là hình thoi.                
D. \[\left( T \right)\]là hình vuông.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP