Câu hỏi:

06/10/2025 8 Lưu

Tính giới hạn \(I = \lim \frac{{10n + 3}}{{3n - 15}}\) ta được kết quả:

A. \(I = - \frac{{10}}{3}\).                       
B. \(I = \frac{{10}}{3}\).       
C. \(I = \frac{3}{{10}}\).       
D. \(I = - \frac{2}{5}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Ta có \(I = \lim \frac{{10n + 3}}{{3n - 15}} = \lim \frac{{10 + \frac{3}{n}}}{{3 - \frac{{15}}{n}}} = \frac{{10}}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(I = - \infty \).     
B. \(I = 0\).              
C. \(I = + \infty \).                     
D. \(I = 1\).

Lời giải

\(I = \lim \frac{{2n - 3}}{{2{n^2} + 3n + 1}}\)\( = \lim \frac{{{n^2}\left( {\frac{2}{n} - \frac{3}{{{n^2}}}} \right)}}{{{n^2}\left( {2 + \frac{3}{n} + \frac{1}{{{n^2}}}} \right)}}\)\( = \lim \frac{{\frac{2}{n} - \frac{3}{{{n^2}}}}}{{2 + \frac{3}{n} + \frac{1}{{{n^2}}}}}\)\( = 0\).

Lời giải

\(\mathop {\lim }\limits_{n \to + \infty } \frac{{2{n^2} + 1}}{{3{n^2} + n}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{2 + \frac{1}{{{n^2}}}}}{{3 + \frac{1}{n}}} = \frac{2}{3}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(0\).                      
B. \(\frac{1}{3}\).   
C. \( + \infty \).                               
D. \(\frac{1}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP