Câu hỏi:

06/10/2025 9 Lưu

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Các mệnh đề sau đúng/sai?

a) Ta nói dãy số \[\left( {{u_n}} \right)\] có giới hạn là số \[a\] (hay \[{u_n}\] dần tới \[a\]) khi \[n \to + \infty \], nếu \[\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} - a} \right) = 0\].

b) Ta nói dãy số \[\left( {{u_n}} \right)\] có giới hạn là \[0\]khi \[n\] dần tới vô cực, nếu \[\left| {{u_n}} \right|\] có thể lớn hơn một số dương tùy ý, kể từ một số hạng nào đó trở đi.

c) Ta nói dãy số \[\left( {{u_n}} \right)\] có giới hạn \[ + \infty \] khi \[n \to + \infty \] nếu \[{u_n}\] có thể nhỏ hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

d) Ta nói dãy số \[\left( {{u_n}} \right)\] có giới hạn \[ - \infty \] khi \[n \to + \infty \] nếu \[{u_n}\] có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Sai

c) Sai

d) Sai

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(I = - \infty \).     
B. \(I = 0\).              
C. \(I = + \infty \).                     
D. \(I = 1\).

Lời giải

\(I = \lim \frac{{2n - 3}}{{2{n^2} + 3n + 1}}\)\( = \lim \frac{{{n^2}\left( {\frac{2}{n} - \frac{3}{{{n^2}}}} \right)}}{{{n^2}\left( {2 + \frac{3}{n} + \frac{1}{{{n^2}}}} \right)}}\)\( = \lim \frac{{\frac{2}{n} - \frac{3}{{{n^2}}}}}{{2 + \frac{3}{n} + \frac{1}{{{n^2}}}}}\)\( = 0\).

Lời giải

\(\mathop {\lim }\limits_{n \to + \infty } \frac{{2{n^2} + 1}}{{3{n^2} + n}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{2 + \frac{1}{{{n^2}}}}}{{3 + \frac{1}{n}}} = \frac{2}{3}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(0\).                      
B. \(\frac{1}{3}\).   
C. \( + \infty \).                               
D. \(\frac{1}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP