Câu hỏi:

06/10/2025 12 Lưu

Cho \({u_n} = \frac{{1 + a + {a^2} + \cdots + {a^n}}}{{1 + b + {b^2} + \cdots + {b^n}}}\) với \(a,b\) là các số thực thoả mãn \(|a| < 1,|b| < 1\). Tính \(\mathop {\lim }\limits_{n \to + \infty } {u_n}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \({u_n} = \frac{{1 + a + {a^2} + \cdots + {a^n}}}{{1 + b + {b^2} + \cdots + {b^n}}} = \frac{{\frac{{1 - {a^{n + 1}}}}{{1 - a}}}}{{\frac{{1 - {b^{n + 1}}}}{{1 - b}}}} = \frac{{1 - b}}{{1 - a}} \cdot \frac{{1 - {a^{n + 1}}}}{{1 - {b^{n + 1}}}}\).

Do đó \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = \frac{{1 - b}}{{1 - a}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(I = - \infty \).     
B. \(I = 0\).              
C. \(I = + \infty \).                     
D. \(I = 1\).

Lời giải

\(I = \lim \frac{{2n - 3}}{{2{n^2} + 3n + 1}}\)\( = \lim \frac{{{n^2}\left( {\frac{2}{n} - \frac{3}{{{n^2}}}} \right)}}{{{n^2}\left( {2 + \frac{3}{n} + \frac{1}{{{n^2}}}} \right)}}\)\( = \lim \frac{{\frac{2}{n} - \frac{3}{{{n^2}}}}}{{2 + \frac{3}{n} + \frac{1}{{{n^2}}}}}\)\( = 0\).

Lời giải

\(\mathop {\lim }\limits_{n \to + \infty } \frac{{2{n^2} + 1}}{{3{n^2} + n}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{2 + \frac{1}{{{n^2}}}}}{{3 + \frac{1}{n}}} = \frac{2}{3}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(0\).                      
B. \(\frac{1}{3}\).   
C. \( + \infty \).                               
D. \(\frac{1}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP