Câu hỏi:

06/10/2025 40 Lưu

Một quả bóng cao su được thả từ độ cao \(5\;m\) xuống một mặt sàn. Sau mỗi lần chạm sàn, quả bóng nảy lên độ cao bằng \(\frac{2}{3}\) độ cao trước đó. Giả sử rằng quả bóng luôn chuyển động vuông góc với mặt sàn và quá trình này tiếp diễn vô hạn lần. Giả sử \({u_n}\) là độ cao (tính bằng mét) của quả bóng sau lần nảy lên thứ \(n\). Chứng minh rằng dãy số \(\left( {{u_n}} \right)\) có giới hạn là 0.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Một quả bóng cao su được thả từ độ cao \(5\;m\) xuống mặt sàn, sau lần chạm sàn đầu tiên, quả bỏng nảy lên một độ cao là \({u_1} = \frac{2}{3} \cdot 5\).

Tiếp đó, bóng rơi từ độ cao \({u_1}\) xuống mặt sàn và nảy lên độ cao là \({u_2} = \frac{2}{3}{u_1} = \frac{2}{3} \cdot \left( {\frac{2}{3} \cdot 5} \right) = 5 \cdot {\left( {\frac{2}{3}} \right)^2}\).

Tiếp đó, bóng rơi từ độ cao \({u_2}\) xuống mặt sàn và nảy lên độ cao là \({u_3} = \frac{2}{3}{u_2} = \frac{2}{3} \cdot \left( {5 \cdot {{\left( {\frac{2}{3}} \right)}^2}} \right) = 5 \cdot {\left( {\frac{2}{3}} \right)^3}\) và cứ tiếp tục như vậy.

Sau lần chạm sàn thứ \[n\], quả bóng nảy lên độ cao là \({u_n} = 5 \cdot {\left( {\frac{2}{3}} \right)^n}\).

Ta có: \(\mathop {\lim }\limits_{n \to + \infty } {\left( {\frac{2}{3}} \right)^n} = 0\), do đó, \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\), suy ra điều phải chứng minh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Sai

c) Đúng

d) Sai

 

a) \(\lim {\left( {\frac{2}{3}} \right)^n} = 0\,\) \(\left( {{\rm{do}}\,\frac{2}{3} < 1} \right)\)

b) \(\lim \frac{1}{{{{(\sqrt 2 )}^n}}} = \lim {\left( {\frac{1}{{\sqrt 2 }}} \right)^n} = 0\,\left( {{\rm{do}}\,\frac{1}{{\sqrt 2 }}\, < 1} \right)\)

c) \(\lim \frac{1}{{{n^3}}} = 0\)

d) \(\lim 4 = 4\)

Lời giải

a) Sai

b) Sai

c) Sai

d) Đúng

a) Ta có: \(\lim \frac{{2n + 1}}{{ - 3n + 2}} = \lim \frac{{n\left( {2 + \frac{1}{n}} \right)}}{{n\left( { - 3 + \frac{2}{n}} \right)}} = \lim \frac{{2 + \frac{1}{n}}}{{ - 3 + \frac{2}{n}}} = \frac{{ - 2}}{3}\)

b) Ba số \( - \frac{5}{3}; - \frac{2}{3};\frac{1}{3}\) tạo thành một cấp số cộng với công sai bằng 1

c) Trên khoảng \(\left( { - \pi ;\pi } \right)\) phương trình lượng giác \(\sin x = a\) có 2 nghiệm

d) Cho cấp số nhân \(\left( {{u_n}} \right)\) với công bội \(q = 3\)\({u_1} = a\), thì \({u_3} = - 6\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[1\].                     
B. \[2\].                    
C. \[ - 1\].                             
D. \[0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{1}{3}\).    
B. \( - \frac{1}{3}\).            
C. \( - 2\).                
D. \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP