Tìm được các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - \infty } \left( {{x^2} - 10x} \right) = + \infty \);
b) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{3{x^2} - 4x + 1}}{{2{x^2} + x + 1}} = \frac{3}{2}\)
c) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + x + 1} - 3x}}{{2 - 3x}} = \frac{5}{4}\)
d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt[3]{{8{x^3} + 3{x^2} + 1}} - x}}{{\sqrt {4{x^2} - x + 2} + 3x}} = 1\).
Tìm được các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - \infty } \left( {{x^2} - 10x} \right) = + \infty \);
b) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{3{x^2} - 4x + 1}}{{2{x^2} + x + 1}} = \frac{3}{2}\)
c) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + x + 1} - 3x}}{{2 - 3x}} = \frac{5}{4}\)
d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt[3]{{8{x^3} + 3{x^2} + 1}} - x}}{{\sqrt {4{x^2} - x + 2} + 3x}} = 1\).
Câu hỏi trong đề: Đề kiểm tra Giới hạn của hàm số (có lời giải) !!
Quảng cáo
Trả lời:

a) Đúng |
b) Đúng |
c) Sai |
d) Đúng |
a) \(\mathop {\lim }\limits_{x \to - \infty } \left( {{x^2} - 10x} \right) = \mathop {\lim }\limits_{x \to - \infty } {x^2}\left( {1 - \frac{{10}}{x}} \right) = + \infty \).
b) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{3{x^2} - 4x + 1}}{{2{x^2} + x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2}\left( {3 - \frac{4}{x} + \frac{1}{{{x^2}}}} \right)}}{{{x^2}\left( {2 + \frac{1}{x} + \frac{1}{{{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{3 - \frac{4}{x} + \frac{1}{{{x^2}}}}}{{2 + \frac{1}{x} + \frac{1}{{{x^2}}}}} = \frac{3}{2}\)
c)
\(\begin{array}{*{20}{l}}{\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + x + 1} - 3x}}{{2 - 3x}}}&{ = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2}\left( {1 + \frac{1}{x} + \frac{1}{{{x^2}}}} \right)} - 3x}}{{x\left( {\frac{2}{x} - 3} \right)}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - x\sqrt {1 + \frac{1}{x} + \frac{1}{{{x^2}}}} - 3x}}{{x\left( {\frac{2}{x} - 3} \right)}}}\\{}&{ = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - \sqrt {1 + \frac{1}{x} + \frac{1}{{{x^2}}}} - 3}}{{\frac{2}{x} - 3}} = \frac{{ - \sqrt 1 - 3}}{{ - 3}} = \frac{4}{3}}\end{array}\)
d)
\(\begin{array}{l}\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt[3]{{8{x^3} + 3{x^2} + 1}} - x}}{{\sqrt {4{x^2} - x + 2} + 3x}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt[3]{{{x^3}\left( {8 + \frac{3}{x} + \frac{1}{{{x^3}}}} \right)}} - x}}{{\sqrt {{x^2}\left( {4 - \frac{1}{x} + \frac{2}{{{x^2}}}} \right)} + 3x}}\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{{x\sqrt[3]{{8 + \frac{3}{x} + \frac{1}{{{x^3}}}}} - x}}{{x\sqrt {4 - \frac{1}{x} + \frac{2}{{{x^2}}}} + 3x}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt[3]{{8 + \frac{3}{x} + \frac{1}{{{x^3}}}}} - 1}}{{\sqrt {4 - \frac{1}{x} + \frac{2}{{{x^2}}}} + 3}} = \frac{{\sqrt[3]{8} - 1}}{{ - \sqrt 4 + 3}} = 1\end{array}\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt \[f\left( x \right) = \left( {{m^2} + 1} \right){x^3} - 2{m^2}{x^2} - 4x + {m^2} + 1\].
Hàm số \[f\left( x \right) = \left( {{m^2} + 1} \right){x^3} - 2{m^2}{x^2} - 4x + {m^2} + 1\] liên tục trên \[\mathbb{R}\].
Ta có: \[f\left( x \right) = {m^2}\left( {{x^3} - 2{x^2} + 1} \right) + {x^3} - 4x + 1\]
\[f\left( { - 3} \right) = - 44{m^2} - 14 < 0;\,\,\forall m\]
\[f\left( 0 \right) = {m^2} + 1 > 0,\forall m\,\]
\[f\left( 1 \right) = - 2\]
\[f\left( 2 \right) = {m^2} + 1 > 0\,;\,\,\forall m\]
Vì \[f\left( { - 3} \right).\,f\left( 0 \right) < 0\] nên phương trình có ít nhất 1 nghiệm thuộc khoảng \[\left( { - 3;0} \right)\].
Vì \[f\left( 0 \right).\,f\left( 1 \right) < 0\] nên phương trình có ít nhất 1 nghiệm thuộc khoảng \[\left( {0;1} \right)\].
Vì \[f\left( 1 \right).\,f\left( 2 \right) < 0\] nên phương trình có ít nhất 1 nghiệm thuộc khoảng \[\left( {1;2} \right)\].
Vậy phương trình \[\left( {{m^2} + 1} \right){x^3} - 2{m^2}{x^2} - 4x + {m^2} + 1 = 0\] có ít nhất 3 nghiệm trong khoảng \[\left( { - 3;2} \right)\], mà phương trình đã cho là bậc 3 nên phương trình có đúng 3 nghiệm
Lời giải
a) Sai |
b) Sai |
c) Đúng |
d) Đúng |
a) \(\mathop {\lim }\limits_{x \to 2} \left( {3{x^2} - 2x} \right) = {3.2^2} - 2.2 = 8\)
b) \(\mathop {\lim }\limits_{x \to - 2} \frac{{4{x^2} + 2x + 1}}{{x - 4}} = - \frac{{13}}{6}\)
c) \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^3} - {x^2} + 2x - 24}}{{{x^2} - 9}} = \mathop {\lim }\limits_{x \to 3} \frac{{(x - 3)\left( {{x^2} + 2x + 8} \right)}}{{(x - 3)(x + 3)}} = \mathop {\lim }\limits_{x \to 3} \frac{{{x^2} + 2x + 8}}{{x + 3}} = \frac{{23}}{6}\)
d) \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^3} + 5{x^2} - x - 14}}{{{x^2} - 7x - 18}} = \mathop {\lim }\limits_{x \to - 2} \frac{{(x + 2)\left( {{x^2} + 3x - 7} \right)}}{{(x + 2)(x - 9)}} = \mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} + 3x - 7}}{{x - 9}} = \frac{9}{{11}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.