Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{l}}{\frac{{\sqrt {x - 1} - 1}}{{{x^2} - 3x + 2}}}&{{\rm{ khi }}x \ne 2}\\{\frac{{2a + 1}}{6}}&{{\rm{ khi }}x = 2}\end{array}} \right.\) và \(g(x) = \sin \frac{{\pi x}}{4}\). Khi đó:
a) Giới hạn \(\mathop {\lim }\limits_{x \to 2} f(x) = \frac{1}{2}\)
b) Hàm số \(g(x)\) liên tục tại điểm \({x_0} = 2\).
c) Khi \(a = 1\) thì hàm số \(f(x)\) liên tục tại \({x_0} = 2\)
d) Khi \(a = 0\) thì hàm số \(y = f\left( x \right) + g\left( x \right)\) liên tục tại \({x_0} = 2\)
Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{l}}{\frac{{\sqrt {x - 1} - 1}}{{{x^2} - 3x + 2}}}&{{\rm{ khi }}x \ne 2}\\{\frac{{2a + 1}}{6}}&{{\rm{ khi }}x = 2}\end{array}} \right.\) và \(g(x) = \sin \frac{{\pi x}}{4}\). Khi đó:
a) Giới hạn \(\mathop {\lim }\limits_{x \to 2} f(x) = \frac{1}{2}\)
b) Hàm số \(g(x)\) liên tục tại điểm \({x_0} = 2\).
c) Khi \(a = 1\) thì hàm số \(f(x)\) liên tục tại \({x_0} = 2\)
d) Khi \(a = 0\) thì hàm số \(y = f\left( x \right) + g\left( x \right)\) liên tục tại \({x_0} = 2\)
Câu hỏi trong đề: Đề kiểm tra Hàm số liên tục (có lời giải) !!
Quảng cáo
Trả lời:
|
a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
Ta có: \(f(2) = \frac{{2a + 1}}{6}\) và \(\mathop {\lim }\limits_{x \to 2} f(x) = \mathop {\lim }\limits_{x \to 2} \frac{{\sqrt {x - 1} - 1}}{{{x^2} - 3x + 2}}\)
\( = \mathop {\lim }\limits_{x \to 2} \frac{{x - 1 - 1}}{{(x - 2)(x - 1)(\sqrt {x - 1} + 1)}} = \mathop {\lim }\limits_{x \to 2} \frac{1}{{(x - 1)(\sqrt {x - 1} + 1)}} = \frac{1}{2}.\)
Hàm số \(f(x)\) liên tục tại \(x = 2 \Leftrightarrow \mathop {\lim }\limits_{x \to 2} f(x) = f(2) \Leftrightarrow \frac{{2a + 1}}{6} = \frac{1}{2} \Leftrightarrow a = 1\).
Ta có: \(g(2) = \sin \frac{{2\pi }}{4} = 1\) và \(\mathop {\lim }\limits_{x \to 2} g(x) = \sin \frac{{2\pi }}{4} = 1\) nên \(g(2) = \mathop {\lim }\limits_{x \to 2} g(x)\).
Vậy hàm số \(g(x)\) liên tục tại điểm \({x_0} = 2\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Ta có \[\mathop {\lim }\limits_{x \to 1} f\left( x \right)\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x - 1}}{{x - 1}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x - 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt x + 1}}\]\[ = \frac{1}{2}\].
Để hàm số liên tục tại \[{x_0} = 1\] khi \[\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\]\( \Leftrightarrow a = \frac{1}{2}\).
Lời giải
|
a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
Ta có: \(f\left( {{x_0}} \right) = f(1) = 1 + 1 = 2\).
\( \Rightarrow \mathop {\lim }\limits_{x \to {x_0}} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (x + 1) = 2 = f\left( {{x_0}} \right){\rm{. }}\)
Vậy hàm số liên tục tại điểm \({x_0} = 1\).
Ta có: \(g\left( {{x_0}} \right) = g(1) = 4\).
\(\mathop {\lim }\limits_{x \to {x_0}} g(x) = \mathop {\lim }\limits_{x \to 1} \left( {4{x^2} - x + 1} \right) = 4 = g(1)\)
Vậy hàm số liên tục tại điểm \({x_0} = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.