Câu hỏi:

07/10/2025 8 Lưu

Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\frac{{{x^2} + x - 2}}{{x - 1}}}&{{\rm{\;khi \;}}x \ne 1}\\a&{{\rm{\;khi \;}}x = 1}\end{array}} \right.\). Hàm số \(f\left( x \right)\) liên tục tại \(x = 1\) khi

A. \(a = 0\).                
B. \(a = 3\).              
C. \(a = - 1\).                             
D. \(a = 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Chọn B
limx1x2+x2x1=limx1x+2=3

Để \(f\left( x \right)\) liên tục tại \(x = 1\) thì  suy ra \({\rm{a}} = 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai

b) Đúng

c) Sai

d) Đúng

 

Nếu nhân lượng liên hợp :

Ta có \[\lim \left( {\sqrt {{n^2} - 8n} - n + {a^2}} \right) = \lim \frac{{\left( {2{a^2} - 8} \right)n}}{{\sqrt {{n^2} + n} + n}} = \lim \frac{{2{a^2} - 8}}{{\sqrt {1 + \frac{1}{n}} + 1}}\]

\[ = {a^2} - 4 = 0 \Leftrightarrow a = \pm 2.\]

Câu 2

A. \( + \infty \).          
B. \( - \infty \).         
C. \(0\).                           
D. \(1\).

Lời giải

Chọn C

\[\lim \frac{{{3^n} - {{4.2}^{n - 1}} - 3}}{{{{3.2}^n} + {4^n}}} = \lim \frac{{{3^n} - {{2.2}^n} - 3}}{{{{3.2}^n} + {4^n}}} = \lim \frac{{{{\left( {\frac{3}{4}} \right)}^n} - 2.{{\left( {\frac{1}{2}} \right)}^n} - 3.{{\left( {\frac{1}{4}} \right)}^n}}}{{3.{{\left( {\frac{1}{2}} \right)}^n} + 1}} = 0\]

Câu 4

A. \(T = 0\)               
B. \(T = \frac{1}{4}\)             
C. \(T = \frac{1}{8}\)             
D. \(T = \frac{1}{{16}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP