Trong không gian với hệ tọa độ Oxyz, một viên đạn được bắn ra từ vị trí \(A\left( {1;2;3} \right)\) hướng đến vị trí \(B\left( {0;1; - 6} \right)\), bia chắn là mặt phẳng \(\left( P \right):4x - y + 2z + 13 = 0\), đơn vị là kilômét.
a) Điểm \(B\) thuộc mặt phẳng \(\left( P \right)\).
b) Giả sử viên đạn chuyển động thẳng đều theo hướng vectơ \(\vec v = \left( { - 2; - 2; - 18} \right)\) với vận tốc 800 m/s (bỏ qua mọi lực cản và chướng ngại vật), sau một phút viên đạn bắn ra đi qua điểm \(B\).
c) Góc giữa đường thẳng \[AB\] và mặt phẳng \(\left( P \right)\) (làm tròn đến hàng đơn vị) là \(60^\circ \).
d) Hình chiếu vuông góc của \(A\) trên \[\left( {Oxy} \right)\] là \(H\left( {0;2;3} \right)\).
Trong không gian với hệ tọa độ Oxyz, một viên đạn được bắn ra từ vị trí \(A\left( {1;2;3} \right)\) hướng đến vị trí \(B\left( {0;1; - 6} \right)\), bia chắn là mặt phẳng \(\left( P \right):4x - y + 2z + 13 = 0\), đơn vị là kilômét.
a) Điểm \(B\) thuộc mặt phẳng \(\left( P \right)\).
b) Giả sử viên đạn chuyển động thẳng đều theo hướng vectơ \(\vec v = \left( { - 2; - 2; - 18} \right)\) với vận tốc 800 m/s (bỏ qua mọi lực cản và chướng ngại vật), sau một phút viên đạn bắn ra đi qua điểm \(B\).
c) Góc giữa đường thẳng \[AB\] và mặt phẳng \(\left( P \right)\) (làm tròn đến hàng đơn vị) là \(60^\circ \).
d) Hình chiếu vuông góc của \(A\) trên \[\left( {Oxy} \right)\] là \(H\left( {0;2;3} \right)\).
Quảng cáo
Trả lời:
a) Đúng. Ta có: \(4.0 - 1 + 2.\left( { - 6} \right) + 13 = 0\) \( \Rightarrow B \in \left( P \right)\).
b) Đúng. \(\overrightarrow {AB} = \left( { - 1; - 1; - 9} \right)\).
Ta thấy \(\overrightarrow v = 2\overrightarrow {AB} \) \( \Rightarrow \) Hướng chuyển động theo vectơ \(\overrightarrow v \) chính là hướng chuyển động từ \(A\) đến \(B\).
\(AB = \sqrt {{1^2} + {1^2} + {9^2}} = \sqrt {83} \left( {{\rm{km}}} \right) = 1000\sqrt {83} \left( {\rm{m}} \right)\).
Suy ra thời gian viên đạn bay từ \(A\) đến \(B\) là: \(\frac{{AB}}{{800}} = \frac{{5\sqrt {83} }}{4} \approx 11,39\) giây.
Do đó sau 1 phút viên đạn đã đi qua điểm \(B\).
c) Sai. \(\overrightarrow {BA} = \left( {1;1;9} \right)\); \(\overrightarrow {{n_{\left( P \right)}}} = \left( {4; - 1;2} \right)\).
\[\sin \left( {AB,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow {BA} ,\overrightarrow {{n_{\left( P \right)}}} } \right)} \right| = \frac{{\left| {\overrightarrow {BA} .\overrightarrow {{n_{\left( P \right)}}} } \right|}}{{\left| {\overrightarrow {BA} } \right|.\left| {\overrightarrow {{n_{\left( P \right)}}} } \right|}} = \frac{{\left| {4 - 1 + 18} \right|}}{{\sqrt {83} .\sqrt {21} }} = \frac{{\sqrt {1743} }}{{83}}\]\( \Rightarrow \widehat {\left( {AB,\left( P \right)} \right)} \approx 30^\circ \).
d) Sai. Hình chiếu vuông góc của \(A\) trên \(\left( {Oxy} \right)\) là \(H\left( {1;2;0} \right)\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương trình mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} = 36\).
Ta có \(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}} + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \).
Áp dụng bất đẳng thức Minkowski ta có:
\(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}} + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \)\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2} + 4{z^2}} \)
\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \).
Điều kiện để \(MA + MB = \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \) là khi \(z = 0\), khi đó \(\,{x^2} + {y^2} = 36\)
Mặt khác, vì \(M\left( {x;y;z} \right)\) thuộc mặt cầu tâm \(O\), bán kính bằng 6 nên \( - 6 \le x;y;z \le 6\) dó đó \(x + y > - 12\).
Áp dụng bất đẳng thức Bunhiacopxki, ta có \(x + y \le \sqrt {\left( {{1^2} + {1^2}} \right)\left( {{x^2} + {y^2}} \right)} = \sqrt {2.36} = 6\sqrt 2 \).
Đặt \(t = x + y \Rightarrow - 12 < t \le 6\sqrt 2 \), khi đó \(f\left( t \right) = MA + MB = \sqrt {{{\left( {t - 52} \right)}^2} + {t^2}} = \sqrt {2{t^2} - 104t + {{52}^2}} \).
\(f'\left( t \right) = \frac{{2t - 52}}{{\sqrt {2{t^2} - 104t + {{52}^2}} }}\).
Dễ thấy hàm số \[f'\left( t \right) \le 0\,\]khi \( - 12 < t \le 6\sqrt 2 \). Do đó \(f\left( t \right)\) đạt giá trị nhỏ nhất trên \( - 12 < t \le 6\sqrt 2 \) khi \(t = 6\sqrt 2 \) và bằng \(f\left( {6\sqrt 2 } \right) = \sqrt {2{t^2} - 104t + {{52}^2}} = \sqrt {2776 - 624\sqrt 2 } \approx 44\).
Đáp án: 44.
Lời giải
Do máy bay bay trên đường thẳng đi qua hai điểm \(\left( {200;70;118} \right)\) và \(\left( {80;105;113} \right)\) nên quỹ đạo bay của máy bay là đường thẳng có phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x = 200 - 24t}\\{y = 70 + 7t}\\{z = 118 - t}\end{array}} \right.\)
Sau 50 giây, độ cao của máy bay giảm 400 m, tức là cao độ của máy bay giảm đi 4. Do máy bay bay với vận tốc không đổi nên sau 25 giây, độ cao của máy bay sẽ giảm đi thêm 200 m, tức là cao độ giảm đi thêm 2. Khi đó, tại thời điểm này, cao độ của máy bay là \(118 - 4 - 2 = 112\).
Xét phương trình \(118 - t = 112 \Leftrightarrow t = 6\). Khi đó, sau 75 giây, toạ độ của máy bay là:
\(\left\{ {\begin{array}{*{20}{l}}{{x_0} = 200 - 24.6 = 56}\\{{y_0} = 70 + 7.6 = 112}\\{{z_0} = 118 - 6 = 112}\end{array}} \right.\).
Khoảng cách từ sân bay đến máy bay khi đó là
\(S = \sqrt {{{5600}^2} + {{11200}^2} + {{11200}^2}} = 16800\,{\rm{(m)}} = 16,8\,\,{\rm{(km)}}\).
Đáp án: 16,8.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

