Trong không gian hệ trục tọa độ Oxyz (đơn vị trên mỗi trục là kilômét), đài kiểm soát không lưu của một sân bay ở vị trí \(O\left( {0;0;0} \right)\) và được thiết kế phát hiện máy bay ở khoảng cách tối đa \(600\,{\rm{km}}\). Một máy bay đang chuyển động với vận tốc \(900\,\)km/h theo đường thẳng \(d\) có phương trình \[\left\{ \begin{array}{l}x = - 1000 + 100t\\y = - 300 + 80t\\z = 100\sqrt {11} \end{array} \right.\left( {t \in \mathbb{R}} \right)\] và hướng về đài kiểm soát không lưu (như hình vẽ).

a) Ranh giới vùng phát sóng bên ngoài của đài kiểm soát không lưu trong không gian là mặt cầu có bán kính bằng \(300\,\,{\rm{km}}\).
b) Phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phát sóng của đài kiểm soát không lưu trong không gian là \({x^2} + {y^2} + {z^2} = 360000\).
c) Máy bay đang chuyển động theo đường thẳng \(d\) đến vị trí điểm \(M\left( { - 500\,;\,100\,;\,100\sqrt {11} } \right)\). Vị trí này nằm ngoài vùng kiểm soát không lưu của đài kiểm soát không lưu sân bay.
d) Thời gian kể từ khi đài kiểm soát không lưu phát hiện máy bay đến khi máy bay ra khỏi vùng kiểm soát không lưu là \(\frac{4}{3}\)giờ.
Trong không gian hệ trục tọa độ Oxyz (đơn vị trên mỗi trục là kilômét), đài kiểm soát không lưu của một sân bay ở vị trí \(O\left( {0;0;0} \right)\) và được thiết kế phát hiện máy bay ở khoảng cách tối đa \(600\,{\rm{km}}\). Một máy bay đang chuyển động với vận tốc \(900\,\)km/h theo đường thẳng \(d\) có phương trình \[\left\{ \begin{array}{l}x = - 1000 + 100t\\y = - 300 + 80t\\z = 100\sqrt {11} \end{array} \right.\left( {t \in \mathbb{R}} \right)\] và hướng về đài kiểm soát không lưu (như hình vẽ).

a) Ranh giới vùng phát sóng bên ngoài của đài kiểm soát không lưu trong không gian là mặt cầu có bán kính bằng \(300\,\,{\rm{km}}\).
b) Phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phát sóng của đài kiểm soát không lưu trong không gian là \({x^2} + {y^2} + {z^2} = 360000\).
c) Máy bay đang chuyển động theo đường thẳng \(d\) đến vị trí điểm \(M\left( { - 500\,;\,100\,;\,100\sqrt {11} } \right)\). Vị trí này nằm ngoài vùng kiểm soát không lưu của đài kiểm soát không lưu sân bay.
d) Thời gian kể từ khi đài kiểm soát không lưu phát hiện máy bay đến khi máy bay ra khỏi vùng kiểm soát không lưu là \(\frac{4}{3}\)giờ.
Quảng cáo
Trả lời:
a) Sai. Vì đài kiểm soát không lưu của một sân bay ở vị trí \(O\left( {0;0;0} \right)\) và được thiết kế phát hiện máy bay ở khoảng cách tối đa \(600\)km nên ranh giới vùng phát sóng của đài kiểm soát không lưu trong không gian là mặt cầu có bán kính bằng \(600\)km.
b) Đúng. Ranh giới vùng phát sóng của đài kiểm soát không lưu trong không gian là mặt cầu tâm \(O\left( {0\,;\,0\,;\,0} \right)\) có bán kính bằng \(R = 600\,\)có phương trình là: \({x^2} + {y^2} + {z^2} = 360000\).
c) Đúng. Ta có \(OM = \sqrt {{{\left( { - 500} \right)}^2} + {{\left( {100} \right)}^2} + {{\left( {100\sqrt {11} } \right)}^2}} \approx 608 > 600 = R\).
Vậy, tại vị trí điểm \(M\left( { - 500\,;\,100\,;\,100\sqrt {11} } \right)\) máy bay nằm ngoài vùng kiểm soát không không lưu của đài kiểm soát không lưu sân bay.
d) Sai. Thay \[d:\left\{ \begin{array}{l}x = - 1000 + 100t\\y = - 300 + 80t\\z = 100\sqrt {11} \end{array} \right.\left( {t \in \mathbb{R}} \right)\] vào phương trình mặt cầu\({x^2} + {y^2} + {z^2} = 360000\):
\(\begin{array}{l}{\left( {100t - 1000} \right)^2} + {\left( {80t - 300} \right)^2} + {\left( {100\sqrt {11} } \right)^2} = 360000\\ \Leftrightarrow 164{t^2} - 2480t + 8400 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 10 \Rightarrow B\left( {0\,;\,500\,;\,100\sqrt {11} } \right)\\t = \frac{{210}}{{41}} \Rightarrow C\left( { - \frac{{20000}}{{41}}\,;\,\frac{{4500}}{{41}}\,;\,100\sqrt {11} } \right)\end{array} \right.\end{array}\)
Quãng đường máy bay di chuyển trong vùng kiểm soát không lưu là:
\(BC = \sqrt {{{\left( { - \frac{{20000}}{{41}}} \right)}^2} + {{\left( {\frac{{4500}}{{41}} - 500} \right)}^2} + {{\left( {100\sqrt {11} - 100\sqrt {11} } \right)}^2}} \approx 625\,\)km.
Vậy thời gian máy bay di chuyển theo đường thẳng \(d\) và trong phạm vi kiểm soát không lưu của sân bay là:\(\frac{{625}}{{900}} = \frac{{25}}{{36}}\) giờ.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương trình mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} = 36\).
Ta có \(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}} + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \).
Áp dụng bất đẳng thức Minkowski ta có:
\(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}} + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \)\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2} + 4{z^2}} \)
\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \).
Điều kiện để \(MA + MB = \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \) là khi \(z = 0\), khi đó \(\,{x^2} + {y^2} = 36\)
Mặt khác, vì \(M\left( {x;y;z} \right)\) thuộc mặt cầu tâm \(O\), bán kính bằng 6 nên \( - 6 \le x;y;z \le 6\) dó đó \(x + y > - 12\).
Áp dụng bất đẳng thức Bunhiacopxki, ta có \(x + y \le \sqrt {\left( {{1^2} + {1^2}} \right)\left( {{x^2} + {y^2}} \right)} = \sqrt {2.36} = 6\sqrt 2 \).
Đặt \(t = x + y \Rightarrow - 12 < t \le 6\sqrt 2 \), khi đó \(f\left( t \right) = MA + MB = \sqrt {{{\left( {t - 52} \right)}^2} + {t^2}} = \sqrt {2{t^2} - 104t + {{52}^2}} \).
\(f'\left( t \right) = \frac{{2t - 52}}{{\sqrt {2{t^2} - 104t + {{52}^2}} }}\).
Dễ thấy hàm số \[f'\left( t \right) \le 0\,\]khi \( - 12 < t \le 6\sqrt 2 \). Do đó \(f\left( t \right)\) đạt giá trị nhỏ nhất trên \( - 12 < t \le 6\sqrt 2 \) khi \(t = 6\sqrt 2 \) và bằng \(f\left( {6\sqrt 2 } \right) = \sqrt {2{t^2} - 104t + {{52}^2}} = \sqrt {2776 - 624\sqrt 2 } \approx 44\).
Đáp án: 44.
Lời giải
Gọi \(A,B\) là giao điểm của mp \(\left( Q \right)\) với trục \(Ox\) và \(Oy\), \(H\) là hình chiếu vuông góc của \(O\) lên \(AB\).

Vì khoảng cách giữa hai mặt phẳng bằng \(30\)m nên \(OH = 30\).
Theo giả thiết ta có góc \(\widehat {OAH} = 38^\circ \) nên khi đó \(OA = \frac{{OH}}{{\sin 38^\circ }} = \frac{{30}}{{\sin 38^\circ }}\).
\({x_H} = - OH.\cos 52^\circ = - 30.\cos 52^\circ \), \({y_H} = - OH\cos 38^\circ = - 30\cos 38^\circ \).
Tọa độ điểm \(A\left( { - \frac{{30}}{{\sin 38^\circ }};\,0\,;\,0} \right)\), \(H\left( { - 30\cos 52^\circ ;\, - 30\cos 38^\circ ;0} \right)\) và chọn một vectơ pháp tuyến là \(\overrightarrow n = \left( {1;\,\frac{{\cos 38^\circ }}{{\cos 52^\circ }}\,;\,0} \right)\).
Mặt phẳng \(\left( Q \right)\) đi qua \(A\) vuông góc \(OH\) nhận \(\overrightarrow n \) làm véc tơ pháp tuyến có phương trình:
\(\left( {x + \frac{{30}}{{\sin 38^\circ }}} \right) + \frac{{\cos 38^\circ }}{{\cos 52^\circ }}y = 0 \Leftrightarrow x + \frac{{\cos 38^\circ }}{{\cos 52^\circ }}y + \frac{{30}}{{\sin 38^\circ }} = 0\).
Vậy \(m + n = 68\).
Đáp án: 68.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


