Câu hỏi:

07/10/2025 231 Lưu

Trong không gian hệ trục tọa độ Oxyz (đơn vị trên mỗi trục là kilômét), đài kiểm soát không lưu của một sân bay ở vị trí \(O\left( {0;0;0} \right)\) và được thiết kế phát hiện máy bay ở khoảng cách tối đa \(600\,{\rm{km}}\). Một máy bay đang chuyển động với vận tốc \(900\,\)km/h theo đường thẳng \(d\) có phương trình \[\left\{ \begin{array}{l}x =  - 1000 + 100t\\y =  - 300 + 80t\\z = 100\sqrt {11} \end{array} \right.\left( {t \in \mathbb{R}} \right)\] và hướng về đài kiểm soát không lưu (như hình vẽ).

Trong không gian hệ trục tọa độ Oxyz (đơn vị trên mỗi trục là kilômét), đài kiểm soá (ảnh 1)

a) Ranh giới vùng phát sóng bên ngoài của đài kiểm soát không lưu trong không gian là mặt cầu có bán kính bằng \(300\,\,{\rm{km}}\).

b) Phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phát sóng của đài kiểm soát không lưu trong không gian là \({x^2} + {y^2} + {z^2} = 360000\).

c) Máy bay đang chuyển động theo đường thẳng \(d\) đến vị trí điểm \(M\left( { - 500\,;\,100\,;\,100\sqrt {11} } \right)\). Vị trí này nằm ngoài vùng kiểm soát không lưu của đài kiểm soát không lưu sân bay.

d) Thời gian kể từ khi đài kiểm soát không lưu phát hiện máy bay đến khi máy bay ra khỏi vùng kiểm soát không lưu là \(\frac{4}{3}\)giờ.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Vì đài kiểm soát không lưu của một sân bay ở vị trí \(O\left( {0;0;0} \right)\) và được thiết kế phát hiện máy bay ở khoảng cách tối đa \(600\)km nên ranh giới vùng phát sóng của đài kiểm soát không lưu trong không gian là mặt cầu có bán kính bằng \(600\)km.

b) Đúng. Ranh giới vùng phát sóng của đài kiểm soát không lưu trong không gian là mặt cầu tâm \(O\left( {0\,;\,0\,;\,0} \right)\) có bán kính bằng \(R = 600\,\)có phương trình là: \({x^2} + {y^2} + {z^2} = 360000\).

c) Đúng. Ta có \(OM = \sqrt {{{\left( { - 500} \right)}^2} + {{\left( {100} \right)}^2} + {{\left( {100\sqrt {11} } \right)}^2}}  \approx 608 > 600 = R\).

Vậy, tại vị trí điểm \(M\left( { - 500\,;\,100\,;\,100\sqrt {11} } \right)\) máy bay nằm ngoài vùng kiểm soát không không lưu của đài kiểm soát không lưu sân bay.

d) Sai. Thay \[d:\left\{ \begin{array}{l}x =  - 1000 + 100t\\y =  - 300 + 80t\\z = 100\sqrt {11} \end{array} \right.\left( {t \in \mathbb{R}} \right)\] vào phương trình mặt cầu\({x^2} + {y^2} + {z^2} = 360000\):

\(\begin{array}{l}{\left( {100t - 1000} \right)^2} + {\left( {80t - 300} \right)^2} + {\left( {100\sqrt {11} } \right)^2} = 360000\\ \Leftrightarrow 164{t^2} - 2480t + 8400 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 10 \Rightarrow B\left( {0\,;\,500\,;\,100\sqrt {11} } \right)\\t = \frac{{210}}{{41}} \Rightarrow C\left( { - \frac{{20000}}{{41}}\,;\,\frac{{4500}}{{41}}\,;\,100\sqrt {11} } \right)\end{array} \right.\end{array}\)

Quãng đường máy bay di chuyển trong vùng kiểm soát không lưu là:

\(BC = \sqrt {{{\left( { - \frac{{20000}}{{41}}} \right)}^2} + {{\left( {\frac{{4500}}{{41}} - 500} \right)}^2} + {{\left( {100\sqrt {11}  - 100\sqrt {11} } \right)}^2}}  \approx 625\,\)km.

Vậy thời gian máy bay di chuyển theo đường thẳng \(d\) và trong phạm vi kiểm soát không lưu của sân bay là:\(\frac{{625}}{{900}} = \frac{{25}}{{36}}\) giờ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương trình mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} = 36\).

Ta có \(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}}  + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \).

Áp dụng bất đẳng thức Minkowski ta có:

\(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}}  + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \)\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2} + 4{z^2}} \)

\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \).

Điều kiện để \(MA + MB = \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \) là khi \(z = 0\), khi đó \(\,{x^2} + {y^2} = 36\)

Mặt khác, vì \(M\left( {x;y;z} \right)\) thuộc mặt cầu tâm \(O\), bán kính bằng 6 nên \( - 6 \le x;y;z \le 6\) dó đó \(x + y >  - 12\).

Áp dụng bất đẳng thức Bunhiacopxki, ta có \(x + y \le \sqrt {\left( {{1^2} + {1^2}} \right)\left( {{x^2} + {y^2}} \right)}  = \sqrt {2.36}  = 6\sqrt 2 \).

Đặt \(t = x + y \Rightarrow  - 12 < t \le 6\sqrt 2 \), khi đó \(f\left( t \right) = MA + MB = \sqrt {{{\left( {t - 52} \right)}^2} + {t^2}}  = \sqrt {2{t^2} - 104t + {{52}^2}} \).

\(f'\left( t \right) = \frac{{2t - 52}}{{\sqrt {2{t^2} - 104t + {{52}^2}} }}\).

Dễ thấy hàm số \[f'\left( t \right) \le 0\,\]khi \( - 12 < t \le 6\sqrt 2 \). Do đó \(f\left( t \right)\) đạt giá trị nhỏ nhất trên \( - 12 < t \le 6\sqrt 2 \) khi \(t = 6\sqrt 2 \) và bằng \(f\left( {6\sqrt 2 } \right) = \sqrt {2{t^2} - 104t + {{52}^2}}  = \sqrt {2776 - 624\sqrt 2 }  \approx 44\).

Đáp án: 44.

Lời giải

Do máy bay bay trên đường thẳng đi qua hai điểm \(\left( {200;70;118} \right)\) và \(\left( {80;105;113} \right)\) nên quỹ đạo bay của máy bay là đường thẳng có phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x = 200 - 24t}\\{y = 70 + 7t}\\{z = 118 - t}\end{array}} \right.\)

Sau 50 giây, độ cao của máy bay giảm 400 m, tức là cao độ của máy bay giảm đi 4. Do máy bay bay với vận tốc không đổi nên sau 25 giây, độ cao của máy bay sẽ giảm đi thêm 200 m, tức là cao độ giảm đi thêm 2. Khi đó, tại thời điểm này, cao độ của máy bay là \(118 - 4 - 2 = 112\).

Xét phương trình \(118 - t = 112 \Leftrightarrow t = 6\). Khi đó, sau 75 giây, toạ độ của máy bay là:

\(\left\{ {\begin{array}{*{20}{l}}{{x_0} = 200 - 24.6 = 56}\\{{y_0} = 70 + 7.6 = 112}\\{{z_0} = 118 - 6 = 112}\end{array}} \right.\).

Khoảng cách từ sân bay đến máy bay khi đó là

\(S = \sqrt {{{5600}^2} + {{11200}^2} + {{11200}^2}}  = 16800\,{\rm{(m)}} = 16,8\,\,{\rm{(km)}}\).

Đáp án: 16,8.

Câu 6

A. \(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 1 - t\\z = 0\end{array} \right.\).   
B. \(\left\{ \begin{array}{l}x = - 1 + t\\y = 1 - 2t\\z = 0\end{array} \right.\).              
C. \(\left\{ \begin{array}{l}x = - 1 + t\\y = 1 - t\\z = 0\end{array} \right.\).                          
D. \(\left\{ \begin{array}{l}x = t\\y = 1 - t\\z = 0\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP