Câu hỏi:

07/10/2025 41 Lưu

Một phần sân trường được định vị bởi các điểm A,B,C,D như hình vẽ:

Một phần sân trường được định vị bởi các điểm A,B,C,D như hình vẽ: (ảnh 1)

Bước đầu chúng được lấy “thăng bằng” để có cùng độ cao, biết \(ABCD\) là hình thang vuông ở \(A\) và \(B\) với độ dài \(AB = 25\,{\rm{m}}\), \(AD = 15\,{\rm{m}}\), \(BC = 18\,{\rm{m}}\). Do yêu cầu kĩ thuật, khi lát phẳng phàn sân trường phải thoát nước về góc sân ở \(C\) nên người ta lấy độ cao ở các điểm \(B\), \(C\), \(D\) xuống thấp hơn so với độ cao ở \(A\) là \(10\,{\rm{cm}}\), \(a\,\,{\rm{cm}}\), \(6\,{\rm{cm}}\) tương ứng. Giá trị của \(a\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Một phần sân trường được định vị bởi các điểm A,B,C,D như hình vẽ: (ảnh 2)

Chọn hệ trục tọa độ \(Oxyz\) sao cho \[O \equiv A\], tia \[Ox \equiv AD\]; tia \(Oy \equiv AB\).

Khi đó: \(A\left( {0;\,0;\,0} \right)\); \(B\left( {0;\,2500;\,0} \right)\); \(C\left( {1800;\,2500;\,0} \right)\);\(D\left( {1500;\,0;\,0} \right)\).

Khi hạ độ cao các điểm ở các điểm \(B\), \(C\), \(D\) xuống thấp hơn so với độ cao ở \(A\) là \(10\,{\rm{cm}}\), \(a\,\,{\rm{cm}}\)\(6\,{\rm{cm}}\) tương ứng ta có các điểm mới \(B'\left( {0\,;\,2500\,;\, - 10} \right)\); \(C'\left( {1800\,;\,2500\,;\, - a} \right)\);\(D'\left( {1500\,;\,0\,;\, - 6} \right)\). Theo bài ra có bốn điểm \(A\); \(B'\); \(C'\); \(D'\) đồng phẳng.

Phương trình mặt phẳng \(\left( {AB'D'} \right):x + y + 250z = 0\).

Do \(C'\left( {1800\,;\,\,2500\,;\, - a} \right) \in \left( {AB'D'} \right)\) nên ta có \(1800 + 2500 - 250a = 0 \Leftrightarrow a = 17,2\).

Vậy \(a = 17,2\,{\rm{cm}}\).

Đáp án: 17,2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương trình mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} = 36\).

Ta có \(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}}  + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \).

Áp dụng bất đẳng thức Minkowski ta có:

\(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}}  + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \)\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2} + 4{z^2}} \)

\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \).

Điều kiện để \(MA + MB = \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \) là khi \(z = 0\), khi đó \(\,{x^2} + {y^2} = 36\)

Mặt khác, vì \(M\left( {x;y;z} \right)\) thuộc mặt cầu tâm \(O\), bán kính bằng 6 nên \( - 6 \le x;y;z \le 6\) dó đó \(x + y >  - 12\).

Áp dụng bất đẳng thức Bunhiacopxki, ta có \(x + y \le \sqrt {\left( {{1^2} + {1^2}} \right)\left( {{x^2} + {y^2}} \right)}  = \sqrt {2.36}  = 6\sqrt 2 \).

Đặt \(t = x + y \Rightarrow  - 12 < t \le 6\sqrt 2 \), khi đó \(f\left( t \right) = MA + MB = \sqrt {{{\left( {t - 52} \right)}^2} + {t^2}}  = \sqrt {2{t^2} - 104t + {{52}^2}} \).

\(f'\left( t \right) = \frac{{2t - 52}}{{\sqrt {2{t^2} - 104t + {{52}^2}} }}\).

Dễ thấy hàm số \[f'\left( t \right) \le 0\,\]khi \( - 12 < t \le 6\sqrt 2 \). Do đó \(f\left( t \right)\) đạt giá trị nhỏ nhất trên \( - 12 < t \le 6\sqrt 2 \) khi \(t = 6\sqrt 2 \) và bằng \(f\left( {6\sqrt 2 } \right) = \sqrt {2{t^2} - 104t + {{52}^2}}  = \sqrt {2776 - 624\sqrt 2 }  \approx 44\).

Đáp án: 44.

Lời giải

Do máy bay bay trên đường thẳng đi qua hai điểm \(\left( {200;70;118} \right)\) và \(\left( {80;105;113} \right)\) nên quỹ đạo bay của máy bay là đường thẳng có phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x = 200 - 24t}\\{y = 70 + 7t}\\{z = 118 - t}\end{array}} \right.\)

Sau 50 giây, độ cao của máy bay giảm 400 m, tức là cao độ của máy bay giảm đi 4. Do máy bay bay với vận tốc không đổi nên sau 25 giây, độ cao của máy bay sẽ giảm đi thêm 200 m, tức là cao độ giảm đi thêm 2. Khi đó, tại thời điểm này, cao độ của máy bay là \(118 - 4 - 2 = 112\).

Xét phương trình \(118 - t = 112 \Leftrightarrow t = 6\). Khi đó, sau 75 giây, toạ độ của máy bay là:

\(\left\{ {\begin{array}{*{20}{l}}{{x_0} = 200 - 24.6 = 56}\\{{y_0} = 70 + 7.6 = 112}\\{{z_0} = 118 - 6 = 112}\end{array}} \right.\).

Khoảng cách từ sân bay đến máy bay khi đó là

\(S = \sqrt {{{5600}^2} + {{11200}^2} + {{11200}^2}}  = 16800\,{\rm{(m)}} = 16,8\,\,{\rm{(km)}}\).

Đáp án: 16,8.

Câu 6

A. \(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 1 - t\\z = 0\end{array} \right.\).   
B. \(\left\{ \begin{array}{l}x = - 1 + t\\y = 1 - 2t\\z = 0\end{array} \right.\).              
C. \(\left\{ \begin{array}{l}x = - 1 + t\\y = 1 - t\\z = 0\end{array} \right.\).                          
D. \(\left\{ \begin{array}{l}x = t\\y = 1 - t\\z = 0\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(z + 2 = 0\).               
B. \(z - 2 = 0\).              
C. \(2x - 3y = 0\).                                   
D. \(2x - 3y - 2 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP