Hệ thống định vị toàn cầu GPS là một hệ thống cho phép xác định chính xác vị trí của một vật trong không gian. Cách thức hoạt động của GPS như sau: Trong cùng một thời điểm, vị trí \(M\) của một vật sẽ được xác định bằng 4 vệ tinh cho trước, các vệ tinh này có gắn máy thu tín hiệu, bằng cách so sánh thời gian từ lúc tín hiệu được phát đi với thời gian nhận tín hiệu phản hồi thì sẽ xác định được khoảng cách từ các vệ tinh đến vị trí \(M\). Như vậy, vị trí \(M\) là giao điểm của 4 mặt cầu có tâm là 4 vệ tinh đã cho. Giả sử trong không gian \(Oxyz\), 4 vệ tinh có tọa độ là\(A\left( { - 1;6;3} \right)\), \(B\left( {4;8;1} \right)\), \(C\left( {9;6;7} \right)\), \(D\left( { - 15;18;7} \right)\). Biết khoảng cách từ \(M\) đến các vệ tinh lần lượt là \(MA = 6\), \(MB = 7\), \(MC = 12\), \(MD = 24\). Khi đó tọa độ điểm \(M\left( {{x_M};\,{y_M};\,{z_M}} \right)\). Tính giá trị biểu thức \(T = {x_M} + {y_M} + {z_M}\).
Hệ thống định vị toàn cầu GPS là một hệ thống cho phép xác định chính xác vị trí của một vật trong không gian. Cách thức hoạt động của GPS như sau: Trong cùng một thời điểm, vị trí \(M\) của một vật sẽ được xác định bằng 4 vệ tinh cho trước, các vệ tinh này có gắn máy thu tín hiệu, bằng cách so sánh thời gian từ lúc tín hiệu được phát đi với thời gian nhận tín hiệu phản hồi thì sẽ xác định được khoảng cách từ các vệ tinh đến vị trí \(M\). Như vậy, vị trí \(M\) là giao điểm của 4 mặt cầu có tâm là 4 vệ tinh đã cho. Giả sử trong không gian \(Oxyz\), 4 vệ tinh có tọa độ là\(A\left( { - 1;6;3} \right)\), \(B\left( {4;8;1} \right)\), \(C\left( {9;6;7} \right)\), \(D\left( { - 15;18;7} \right)\). Biết khoảng cách từ \(M\) đến các vệ tinh lần lượt là \(MA = 6\), \(MB = 7\), \(MC = 12\), \(MD = 24\). Khi đó tọa độ điểm \(M\left( {{x_M};\,{y_M};\,{z_M}} \right)\). Tính giá trị biểu thức \(T = {x_M} + {y_M} + {z_M}\).
Quảng cáo
Trả lời:
Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:
\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)
\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)
\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)
\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)
Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).
Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).
Đáp án: 2.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương trình mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} = 36\).
Ta có \(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}} + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \).
Áp dụng bất đẳng thức Minkowski ta có:
\(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}} + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \)\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2} + 4{z^2}} \)
\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \).
Điều kiện để \(MA + MB = \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \) là khi \(z = 0\), khi đó \(\,{x^2} + {y^2} = 36\)
Mặt khác, vì \(M\left( {x;y;z} \right)\) thuộc mặt cầu tâm \(O\), bán kính bằng 6 nên \( - 6 \le x;y;z \le 6\) dó đó \(x + y > - 12\).
Áp dụng bất đẳng thức Bunhiacopxki, ta có \(x + y \le \sqrt {\left( {{1^2} + {1^2}} \right)\left( {{x^2} + {y^2}} \right)} = \sqrt {2.36} = 6\sqrt 2 \).
Đặt \(t = x + y \Rightarrow - 12 < t \le 6\sqrt 2 \), khi đó \(f\left( t \right) = MA + MB = \sqrt {{{\left( {t - 52} \right)}^2} + {t^2}} = \sqrt {2{t^2} - 104t + {{52}^2}} \).
\(f'\left( t \right) = \frac{{2t - 52}}{{\sqrt {2{t^2} - 104t + {{52}^2}} }}\).
Dễ thấy hàm số \[f'\left( t \right) \le 0\,\]khi \( - 12 < t \le 6\sqrt 2 \). Do đó \(f\left( t \right)\) đạt giá trị nhỏ nhất trên \( - 12 < t \le 6\sqrt 2 \) khi \(t = 6\sqrt 2 \) và bằng \(f\left( {6\sqrt 2 } \right) = \sqrt {2{t^2} - 104t + {{52}^2}} = \sqrt {2776 - 624\sqrt 2 } \approx 44\).
Đáp án: 44.
Lời giải
Do máy bay bay trên đường thẳng đi qua hai điểm \(\left( {200;70;118} \right)\) và \(\left( {80;105;113} \right)\) nên quỹ đạo bay của máy bay là đường thẳng có phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x = 200 - 24t}\\{y = 70 + 7t}\\{z = 118 - t}\end{array}} \right.\)
Sau 50 giây, độ cao của máy bay giảm 400 m, tức là cao độ của máy bay giảm đi 4. Do máy bay bay với vận tốc không đổi nên sau 25 giây, độ cao của máy bay sẽ giảm đi thêm 200 m, tức là cao độ giảm đi thêm 2. Khi đó, tại thời điểm này, cao độ của máy bay là \(118 - 4 - 2 = 112\).
Xét phương trình \(118 - t = 112 \Leftrightarrow t = 6\). Khi đó, sau 75 giây, toạ độ của máy bay là:
\(\left\{ {\begin{array}{*{20}{l}}{{x_0} = 200 - 24.6 = 56}\\{{y_0} = 70 + 7.6 = 112}\\{{z_0} = 118 - 6 = 112}\end{array}} \right.\).
Khoảng cách từ sân bay đến máy bay khi đó là
\(S = \sqrt {{{5600}^2} + {{11200}^2} + {{11200}^2}} = 16800\,{\rm{(m)}} = 16,8\,\,{\rm{(km)}}\).
Đáp án: 16,8.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

