Câu hỏi:

07/10/2025 7 Lưu

Với hệ trục tọa độ Oxyz sao cho \(O\) nằm trên mặt nước, mặt phẳng \(\left( {Oxy} \right)\) là mặt nước, trục \(Oz\) hướng lên trên (đơn vị đo: mét), một con chim bói cá đang săn mồi ở vị trí \[C\] cách mặt nước \[5\,\,{\rm{m,}}\] cách mặt phẳng \(\left( {Oxz} \right),\left( {Oyz} \right)\) lần lượt là \(6\,\,{\rm{m}}\) và \(2\,{\rm{m}}\), từ vị trí này nó phóng thẳng xuống vị trí con cá ở vị trí \[A\], biết con cá cách mặt nước \(50\,\,{\rm{cm,}}\)cách mặt phẳng \(\left( {Oxz} \right),\left( {Oyz} \right)\) lần lượt là \(1\,{\rm{m}}\) và \(1,5\,{\rm{m}}\) (tham khảo hình vẽ).

Giả sử vận tốc của con chim bói cá là \(4\,\,{\rm{m/s}}\), hỏi sau bao nhiêu giây thì nó chạm tới mặt nước (làm tròn đến hàng phần trăm)? (ảnh 1)

Giả sử vận tốc của con chim bói cá là \(4\,\,{\rm{m/s}}\), hỏi sau bao nhiêu giây thì nó chạm tới mặt nước (làm tròn đến hàng phần trăm)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi vị trí của con chim bói cá ban đầu là \(C\) và vị trí của con cá là \(A\).

Khi đó ta có \(C\left( {2;6;5} \right)\) và \(A\left( {1,5\,;1\,; - 0,5} \right).\)

Điểm \(B\) lúc chim bói cá tiếp xúc với mặt nước là giao điểm của đường thẳng \(AC\) và \(\left( {Oxy} \right)\).

Đường thẳng \(AC\) đi qua điểm \(C\left( {2;6;5} \right)\) có vectơ chỉ phương là \(\overrightarrow {AC}  = \left( { - 0,5;\, - 5; - 5,5} \right),\) chọn \(\vec u = \left( { - 1; - 10; - 11} \right).\)

Khi đó phương trình của \(AC:\left\{ \begin{array}{l}x = 2 - t\\y = 6 - 10t\\z = 5 - 11t\end{array} \right.\). 

Phương trình của \(\left( {Oxy} \right)\) là \(z = 0.\)

Tọa độ điểm \(B\) là nghiệm \(\left( {x;y;z} \right)\)của hệ: \(\left\{ \begin{array}{l}x = 2 - t\\y = 6 - 10t\\z = 5 - 11t\\z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = \frac{5}{{11}}\\x = \frac{{17}}{{11}}\\y = \frac{{16}}{{11}}\\z = 0\end{array} \right.\).

Suy ra \(B\left( {\frac{{17}}{{11}};\frac{{16}}{{11}};0} \right)\) , độ dài đoạn \(CB = \frac{{5\sqrt {222} }}{{11}}\).

Thời gian đi quãng đường \[BC\]là  \[t = \frac{{BC}}{v} = \frac{{\frac{{5\sqrt {222} }}{{11}}}}{4} = \frac{{5\sqrt {222} }}{{44}} \approx 1,69\,\left( {\rm{s}} \right)\].

Vậy sau 1,69 giây thì chim bói cá chạm tới mặt nước.

Đáp án: 1,69.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Phương trình mặt cầu \[\left( S \right)\] tâm \[I\left( {1;\,3;\,7} \right)\] bán kính 3 km mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là \[{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 7} \right)^2} = 9\].

b) Đúng. Ta có: \[IA = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {2 - 3} \right)}^2} + {{\left( {7 - 7} \right)}^2}}  = \sqrt 2  < 3\] nên điểm \[A\] nằm trong mặt cầu. Vì điểm \[A\] nằm trong mặt cầu nên người dùng điện thoại ở vị trí có toạ độ \[A\left( {2;\,2;\,7} \right)\] có thể sử dụng dịch vụ của trạm thu phát sóng đó.

c) Đúng. Ta có: \[IB = \sqrt {{{\left( {5 - 1} \right)}^2} + {{\left( {6 - 3} \right)}^2} + {{\left( {7 - 7} \right)}^2}}  = 5 > 3\] nên điểm \[B\] nằm ngoài mặt cầu. Vậy người dùng điện thoại ở vị trí có toạ độ \[B\left( {5;\,6;\,7} \right)\] không thể sử dụng dịch vụ của trạm thu phát sóng đó.

d) Đúng. Ta có: \[\overrightarrow {IB} \left( {4;\,3;\,0} \right);\] \[IB = \sqrt {{{\left( {5 - 1} \right)}^2} + {{\left( {6 - 3} \right)}^2} + {{\left( {7 - 7} \right)}^2}}  = 5 > 3\] nên điểm \[B\] nằm ngoài mặt cầu. Phương trình đường thẳng \[BI\] dạng: \[\left\{ \begin{array}{l}x = 1 + 4t\\y = 3 + 3t\\z = 7\end{array} \right.\].

Gọi mặt cầu \[\left( S \right) \cap BI \equiv E\] suy ra tọa độ \[E\] là nghiệm của hệ

\[\left\{ \begin{array}{l}x = 1 + 4t\\y = 3 + 3t\\z = 7\\{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 7} \right)^2} = 9\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}t = \frac{3}{5}\\x = \frac{{17}}{5}\\y = \frac{{24}}{5}\\z = 7\end{array} \right. \Rightarrow E\left( {\frac{{17}}{5};\,\frac{{24}}{5};7} \right) \Rightarrow EB \approx 1,7\\\left\{ \begin{array}{l}t =  - \frac{3}{5}\\x =  - \frac{7}{5}\\y = \frac{6}{5}\\z = 7\end{array} \right. \Rightarrow E\left( { - \frac{7}{5};\,\frac{6}{5};7} \right) \Rightarrow EB = 8\end{array} \right.\]

Vậy khoảng cách lớn nhất để một người ở vị trí có toạ độ \[B\left( {5;\,6;\,7} \right)\] di chuyển được tới vùng phủ sóng theo đơn vị kilômét là \[8\,\]km.

Lời giải

Phương trình mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} = 36\).

Ta có \(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}}  + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \).

Áp dụng bất đẳng thức Minkowski ta có:

\(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}}  + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \)\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2} + 4{z^2}} \)

\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \).

Điều kiện để \(MA + MB = \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \) là khi \(z = 0\), khi đó \(\,{x^2} + {y^2} = 36\)

Mặt khác, vì \(M\left( {x;y;z} \right)\) thuộc mặt cầu tâm \(O\), bán kính bằng 6 nên \( - 6 \le x;y;z \le 6\) dó đó \(x + y >  - 12\).

Áp dụng bất đẳng thức Bunhiacopxki, ta có \(x + y \le \sqrt {\left( {{1^2} + {1^2}} \right)\left( {{x^2} + {y^2}} \right)}  = \sqrt {2.36}  = 6\sqrt 2 \).

Đặt \(t = x + y \Rightarrow  - 12 < t \le 6\sqrt 2 \), khi đó \(f\left( t \right) = MA + MB = \sqrt {{{\left( {t - 52} \right)}^2} + {t^2}}  = \sqrt {2{t^2} - 104t + {{52}^2}} \).

\(f'\left( t \right) = \frac{{2t - 52}}{{\sqrt {2{t^2} - 104t + {{52}^2}} }}\).

Dễ thấy hàm số \[f'\left( t \right) \le 0\,\]khi \( - 12 < t \le 6\sqrt 2 \). Do đó \(f\left( t \right)\) đạt giá trị nhỏ nhất trên \( - 12 < t \le 6\sqrt 2 \) khi \(t = 6\sqrt 2 \) và bằng \(f\left( {6\sqrt 2 } \right) = \sqrt {2{t^2} - 104t + {{52}^2}}  = \sqrt {2776 - 624\sqrt 2 }  \approx 44\).

Đáp án: 44.