Câu hỏi:

07/10/2025 11 Lưu

Trong không gian với hệ tọa độ Oxyz (đơn vị trên mỗi trục là kilomet), một trạm phát sóng radar của Nga được đặt trên bán đảo Crimea ở vị trí \(I\left( { - 2;1; - 1} \right)\) và được thiết kế phát hiện máy bay của địch ở khoảng cách tối đa \(500\) kilomet.

a) Sử dụng phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phát sóng của radar trong không gian?

b) Hai chiếc máy bay do thám của Mỹ và Anh đang bay ở vị trí có tọa độ \(M\left( { - 200;100; - 250} \right)\) và \(N\left( {350; - 100;300} \right)\). Hỏi hai chiếc máy bay đó có bị radar phát hiện hay không?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phát sóng của radar trong không gian là:

\({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 250000\)

b) \[IM = \sqrt {{{\left( { - 200 + 2} \right)}^2} + {{\left( {100 - 1} \right)}^2} + {{\left( { - 250 + 1} \right)}^2}}  \approx 333,2 < 500\] nên điểm \(M\left( { - 200;100; - 250} \right)\) nằm trong mặt cầu đó.

Vậy chiếc máy bay do thám của Mỹ có thể bị phát hiện bởi trạm radar này.

Do \[IN = \sqrt {{{\left( {350 + 2} \right)}^2} + {{\left( {\left( { - 100} \right) - 1} \right)}^2} + {{\left( {300 + 1} \right)}^2}}  \approx 474 < 500\] nên điểm \(N\left( {350; - 100;300} \right)\) nằm trong mặt cầu đó.

Vậy chiếc máy bay do thám của Anh có thể bị phát hiện bởi trạm radar này.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Phương trình mặt cầu \[\left( S \right)\] tâm \[I\left( {1;\,3;\,7} \right)\] bán kính 3 km mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là \[{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 7} \right)^2} = 9\].

b) Đúng. Ta có: \[IA = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {2 - 3} \right)}^2} + {{\left( {7 - 7} \right)}^2}}  = \sqrt 2  < 3\] nên điểm \[A\] nằm trong mặt cầu. Vì điểm \[A\] nằm trong mặt cầu nên người dùng điện thoại ở vị trí có toạ độ \[A\left( {2;\,2;\,7} \right)\] có thể sử dụng dịch vụ của trạm thu phát sóng đó.

c) Đúng. Ta có: \[IB = \sqrt {{{\left( {5 - 1} \right)}^2} + {{\left( {6 - 3} \right)}^2} + {{\left( {7 - 7} \right)}^2}}  = 5 > 3\] nên điểm \[B\] nằm ngoài mặt cầu. Vậy người dùng điện thoại ở vị trí có toạ độ \[B\left( {5;\,6;\,7} \right)\] không thể sử dụng dịch vụ của trạm thu phát sóng đó.

d) Đúng. Ta có: \[\overrightarrow {IB} \left( {4;\,3;\,0} \right);\] \[IB = \sqrt {{{\left( {5 - 1} \right)}^2} + {{\left( {6 - 3} \right)}^2} + {{\left( {7 - 7} \right)}^2}}  = 5 > 3\] nên điểm \[B\] nằm ngoài mặt cầu. Phương trình đường thẳng \[BI\] dạng: \[\left\{ \begin{array}{l}x = 1 + 4t\\y = 3 + 3t\\z = 7\end{array} \right.\].

Gọi mặt cầu \[\left( S \right) \cap BI \equiv E\] suy ra tọa độ \[E\] là nghiệm của hệ

\[\left\{ \begin{array}{l}x = 1 + 4t\\y = 3 + 3t\\z = 7\\{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 7} \right)^2} = 9\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}t = \frac{3}{5}\\x = \frac{{17}}{5}\\y = \frac{{24}}{5}\\z = 7\end{array} \right. \Rightarrow E\left( {\frac{{17}}{5};\,\frac{{24}}{5};7} \right) \Rightarrow EB \approx 1,7\\\left\{ \begin{array}{l}t =  - \frac{3}{5}\\x =  - \frac{7}{5}\\y = \frac{6}{5}\\z = 7\end{array} \right. \Rightarrow E\left( { - \frac{7}{5};\,\frac{6}{5};7} \right) \Rightarrow EB = 8\end{array} \right.\]

Vậy khoảng cách lớn nhất để một người ở vị trí có toạ độ \[B\left( {5;\,6;\,7} \right)\] di chuyển được tới vùng phủ sóng theo đơn vị kilômét là \[8\,\]km.

Lời giải

Phương trình mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} = 36\).

Ta có \(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}}  + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \).

Áp dụng bất đẳng thức Minkowski ta có:

\(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}}  + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \)\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2} + 4{z^2}} \)

\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \).

Điều kiện để \(MA + MB = \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \) là khi \(z = 0\), khi đó \(\,{x^2} + {y^2} = 36\)

Mặt khác, vì \(M\left( {x;y;z} \right)\) thuộc mặt cầu tâm \(O\), bán kính bằng 6 nên \( - 6 \le x;y;z \le 6\) dó đó \(x + y >  - 12\).

Áp dụng bất đẳng thức Bunhiacopxki, ta có \(x + y \le \sqrt {\left( {{1^2} + {1^2}} \right)\left( {{x^2} + {y^2}} \right)}  = \sqrt {2.36}  = 6\sqrt 2 \).

Đặt \(t = x + y \Rightarrow  - 12 < t \le 6\sqrt 2 \), khi đó \(f\left( t \right) = MA + MB = \sqrt {{{\left( {t - 52} \right)}^2} + {t^2}}  = \sqrt {2{t^2} - 104t + {{52}^2}} \).

\(f'\left( t \right) = \frac{{2t - 52}}{{\sqrt {2{t^2} - 104t + {{52}^2}} }}\).

Dễ thấy hàm số \[f'\left( t \right) \le 0\,\]khi \( - 12 < t \le 6\sqrt 2 \). Do đó \(f\left( t \right)\) đạt giá trị nhỏ nhất trên \( - 12 < t \le 6\sqrt 2 \) khi \(t = 6\sqrt 2 \) và bằng \(f\left( {6\sqrt 2 } \right) = \sqrt {2{t^2} - 104t + {{52}^2}}  = \sqrt {2776 - 624\sqrt 2 }  \approx 44\).

Đáp án: 44.