Phần 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Khảo sát những người xem bộ phim hoạt hình vừa được phát hành cho thấy \(70\% \) người xem là trẻ em và \(30\% \) là người lớn. Trong số các trẻ em đến xem phim có \(50\% \) yêu thích bộ phim và khẳng định sẽ đi xem tiếp phần 2, \(30\% \) yêu thích bộ phim nhưng sẽ không xem tiếp phần 2; \(20\% \) còn lại không thích bộ phim và không xem tiếp phần 2. Trong số những người lớn đi xem phim có \(20\% \) yêu thích bộ phim và khẳng định sẽ xem tiếp phần 2, \(10\% \) yêu thích bộ phim nhưng sẽ không xem tiếp phần 2; \(70\% \) còn lại không thích bộ phim và không xem tiếp phần 2. Chọn ngẫu nhiên 1 người đã xem phim.
a) Biết người được chọn là trẻ em, xác suất để người đó yêu thích bộ phim là \(0,56\).
b) Xác suất để người đó không xem tiếp phần 2 là \(0,59\).
c) Biết người đó sẽ xem tiếp phần 2 của bộ phim, xác suất để người đó là trẻ em lớn hơn \(0,85\).
d) Biết người đó yêu thích bộ phim, xác suất để người đó không xem tiếp phần 2 là \(0,37\) (làm tròn đến hàng phần trăm).
Phần 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Khảo sát những người xem bộ phim hoạt hình vừa được phát hành cho thấy \(70\% \) người xem là trẻ em và \(30\% \) là người lớn. Trong số các trẻ em đến xem phim có \(50\% \) yêu thích bộ phim và khẳng định sẽ đi xem tiếp phần 2, \(30\% \) yêu thích bộ phim nhưng sẽ không xem tiếp phần 2; \(20\% \) còn lại không thích bộ phim và không xem tiếp phần 2. Trong số những người lớn đi xem phim có \(20\% \) yêu thích bộ phim và khẳng định sẽ xem tiếp phần 2, \(10\% \) yêu thích bộ phim nhưng sẽ không xem tiếp phần 2; \(70\% \) còn lại không thích bộ phim và không xem tiếp phần 2. Chọn ngẫu nhiên 1 người đã xem phim.
a) Biết người được chọn là trẻ em, xác suất để người đó yêu thích bộ phim là \(0,56\).
b) Xác suất để người đó không xem tiếp phần 2 là \(0,59\).
c) Biết người đó sẽ xem tiếp phần 2 của bộ phim, xác suất để người đó là trẻ em lớn hơn \(0,85\).
d) Biết người đó yêu thích bộ phim, xác suất để người đó không xem tiếp phần 2 là \(0,37\) (làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:
Gọi \(A\) là biến cố “Người đó là trẻ em”;
\(B\) là biến cố “Người đó thích bộ phim”;
\(C\) là biến cố “Người đó xem tiếp phần 2 bộ phim”.
Xét người đi xem là trẻ em có \(P\left( A \right) = 0,7\).
Suy ra \(P\left( {BC} \right) = 50\% = 0,5\), \(P\left( {B\overline C } \right) = 30\% = 0,3\), \[P\left( {\overline B \overline C } \right) = 20\% = 0,2\], \[P\left( {\overline B C} \right) = 0\].
Xét người đi xem là người lớn có \(P\left( {\overline A } \right) = 0,3\).
\(P\left( {BC} \right) = 20\% = 0,2\), \(P\left( {B\overline C } \right) = 10\% = 0,1\), \[P\left( {\overline B \overline C } \right) = 70\% = 0,7\], \[P\left( {\overline B C} \right) = 0\].
a) Sai. Ta có \(P\left( {B\left| A \right.} \right) = 0,5 + 0,3 = 0,8\).
b) Đúng. Ta có \(\overline C = \overline C AB \cup \overline C A\overline B \cup \overline C \overline A B \cup \overline C \overline A \overline B \).
\(P\left( {\overline C } \right) = P\left( {\overline C AB} \right) + P\left( {\overline C A\overline B } \right) + P\left( {\overline C \overline A B} \right) + P\left( {\overline C \overline A \overline B } \right)\)
\( = 0,7 \cdot 0,3 + 0,7 \cdot 0,2 + 0,3 \cdot 0,1 + 0,3 \cdot 0,7 = 0,59\).
c) Đúng. \(P\left( C \right) = 1 - P\left( {\overline C } \right) = 0,41\).
\(P\left( {A\left| C \right.} \right) = \frac{{P\left( {AC} \right)}}{{P\left( C \right)}}\).
\(P\left( {AC} \right) = P\left( {AC\overline B } \right) + P\left( {ACB} \right) = 0,7 \cdot 0 + 0,7 \cdot 0,5 = 0,35\).
Suy ra \(P\left( {A\left| C \right.} \right) = \frac{{P\left( {AC} \right)}}{{P\left( C \right)}} = \frac{{0,35}}{{0,41}} \approx 0,854 > 0,85\).
d) Đúng. \[P\left( {\overline C \left| B \right.} \right) = \frac{{P\left( {\overline C B} \right)}}{{P\left( B \right)}}\].
\(P\left( {\overline C B} \right) = P\left( {\overline C BA} \right) + P\left( {\overline C B\overline A } \right) = 0,3 \cdot 0,7 + 0,1 \cdot 0,3 = 0,24\).
\(P\left( B \right) = P\left( {BA\overline C } \right) + P\left( {BAC} \right) + P\left( {B\overline A C} \right) + P\left( {B\overline A \overline C } \right)\)
\( = 0,7 \cdot 0,3 + 0,7 \cdot 0,5 + 0,3 \cdot 0,2 + 0,3 \cdot 0,1 = 0,65\).
Suy ra \[P\left( {\overline C \left| B \right.} \right) = \frac{{0,24}}{{0,65}} \approx 0,37\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Theo công thức Bayes, ta có: \[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,2.0,7}}{{0,26}} = \frac{7}{{13}}\].
Lời giải
Gọi \[A\] là biến cố “ Chọn nhân viên có trình độ đại học” .
Gọi \[B\] là biến cố “ Chọn nhân viên bị tinh giản biên chế thông qua phỏng vấn” .
Tỷ lệ nhân viên của cơ quan thuộc hai nhóm trình độ: Đại học, Cao đẳng lần lượt là \[65\% \] và \[35\% \] nên \[P\left( A \right) = 0,65 \Rightarrow P\left( {\overline A } \right) = 0,35\].
Qua phỏng vấn thì tỷ lệ nhân viên bị tinh giản của nhóm đại học là\[10\% \], nhóm cao đẳng là \[15\% \] nên \[P\left( {B|A} \right) = 0,1\] và \[P\left( {B|\overline A } \right) = 0,15\].
Chọn một nhân viên bất kỳ đã bị tinh giản thì xác suất để người này có trình độ đại học là \[P\left( {A|B} \right).\]
Theo công thức ta có: \[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}} = \frac{{0,65.0,1}}{{0,65.0,1 + 0,35.0,15}} = 0,55\].
Đáp án: 0,55.
Câu 3
Có ba đồng xu được đựng trong một hộp kín. Đồng xu thứ nhất là một đồng xu cân đối với tỷ lệ mặt ngửa và mặt sấp bằng nhau. Đồng xu thứ hai là một đồng xu bị lỗi có khả năng mặt ngửa xuất hiện là 70%. Đồng xu thứ ba là một đồng xu hai mặt ngửa (khi tung luôn ra mặt ngửa). Bạn An lấy ngẫu nhiên một đồng xu từ hộp và tung nó hai lần. Kết quả của hai lần tung cho thấy xuất hiện một lần mặt sấp và một lần mặt ngửa. Tính xác suất để đồng xu bạn đã chọn là đồng xu thứ hai (đồng xu bị lỗi) (Kết quả làm tròn đến hàng phần trăm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.