Phần 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Khảo sát những người xem bộ phim hoạt hình vừa được phát hành cho thấy \(70\% \) người xem là trẻ em và \(30\% \) là người lớn. Trong số các trẻ em đến xem phim có \(50\% \) yêu thích bộ phim và khẳng định sẽ đi xem tiếp phần 2, \(30\% \) yêu thích bộ phim nhưng sẽ không xem tiếp phần 2; \(20\% \) còn lại không thích bộ phim và không xem tiếp phần 2. Trong số những người lớn đi xem phim có \(20\% \) yêu thích bộ phim và khẳng định sẽ xem tiếp phần 2, \(10\% \) yêu thích bộ phim nhưng sẽ không xem tiếp phần 2; \(70\% \) còn lại không thích bộ phim và không xem tiếp phần 2. Chọn ngẫu nhiên 1 người đã xem phim.
a) Biết người được chọn là trẻ em, xác suất để người đó yêu thích bộ phim là \(0,56\).
b) Xác suất để người đó không xem tiếp phần 2 là \(0,59\).
c) Biết người đó sẽ xem tiếp phần 2 của bộ phim, xác suất để người đó là trẻ em lớn hơn \(0,85\).
d) Biết người đó yêu thích bộ phim, xác suất để người đó không xem tiếp phần 2 là \(0,37\) (làm tròn đến hàng phần trăm).
Phần 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Khảo sát những người xem bộ phim hoạt hình vừa được phát hành cho thấy \(70\% \) người xem là trẻ em và \(30\% \) là người lớn. Trong số các trẻ em đến xem phim có \(50\% \) yêu thích bộ phim và khẳng định sẽ đi xem tiếp phần 2, \(30\% \) yêu thích bộ phim nhưng sẽ không xem tiếp phần 2; \(20\% \) còn lại không thích bộ phim và không xem tiếp phần 2. Trong số những người lớn đi xem phim có \(20\% \) yêu thích bộ phim và khẳng định sẽ xem tiếp phần 2, \(10\% \) yêu thích bộ phim nhưng sẽ không xem tiếp phần 2; \(70\% \) còn lại không thích bộ phim và không xem tiếp phần 2. Chọn ngẫu nhiên 1 người đã xem phim.
a) Biết người được chọn là trẻ em, xác suất để người đó yêu thích bộ phim là \(0,56\).
b) Xác suất để người đó không xem tiếp phần 2 là \(0,59\).
c) Biết người đó sẽ xem tiếp phần 2 của bộ phim, xác suất để người đó là trẻ em lớn hơn \(0,85\).
d) Biết người đó yêu thích bộ phim, xác suất để người đó không xem tiếp phần 2 là \(0,37\) (làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:

Gọi \(A\) là biến cố “Người đó là trẻ em”;
\(B\) là biến cố “Người đó thích bộ phim”;
\(C\) là biến cố “Người đó xem tiếp phần 2 bộ phim”.
Xét người đi xem là trẻ em có \(P\left( A \right) = 0,7\).
Suy ra \(P\left( {BC} \right) = 50\% = 0,5\), \(P\left( {B\overline C } \right) = 30\% = 0,3\), \[P\left( {\overline B \overline C } \right) = 20\% = 0,2\], \[P\left( {\overline B C} \right) = 0\].
Xét người đi xem là người lớn có \(P\left( {\overline A } \right) = 0,3\).
\(P\left( {BC} \right) = 20\% = 0,2\), \(P\left( {B\overline C } \right) = 10\% = 0,1\), \[P\left( {\overline B \overline C } \right) = 70\% = 0,7\], \[P\left( {\overline B C} \right) = 0\].
a) Sai. Ta có \(P\left( {B\left| A \right.} \right) = 0,5 + 0,3 = 0,8\).
b) Đúng. Ta có \(\overline C = \overline C AB \cup \overline C A\overline B \cup \overline C \overline A B \cup \overline C \overline A \overline B \).
\(P\left( {\overline C } \right) = P\left( {\overline C AB} \right) + P\left( {\overline C A\overline B } \right) + P\left( {\overline C \overline A B} \right) + P\left( {\overline C \overline A \overline B } \right)\)
\( = 0,7 \cdot 0,3 + 0,7 \cdot 0,2 + 0,3 \cdot 0,1 + 0,3 \cdot 0,7 = 0,59\).
c) Đúng. \(P\left( C \right) = 1 - P\left( {\overline C } \right) = 0,41\).
\(P\left( {A\left| C \right.} \right) = \frac{{P\left( {AC} \right)}}{{P\left( C \right)}}\).
\(P\left( {AC} \right) = P\left( {AC\overline B } \right) + P\left( {ACB} \right) = 0,7 \cdot 0 + 0,7 \cdot 0,5 = 0,35\).
Suy ra \(P\left( {A\left| C \right.} \right) = \frac{{P\left( {AC} \right)}}{{P\left( C \right)}} = \frac{{0,35}}{{0,41}} \approx 0,854 > 0,85\).
d) Đúng. \[P\left( {\overline C \left| B \right.} \right) = \frac{{P\left( {\overline C B} \right)}}{{P\left( B \right)}}\].
\(P\left( {\overline C B} \right) = P\left( {\overline C BA} \right) + P\left( {\overline C B\overline A } \right) = 0,3 \cdot 0,7 + 0,1 \cdot 0,3 = 0,24\).
\(P\left( B \right) = P\left( {BA\overline C } \right) + P\left( {BAC} \right) + P\left( {B\overline A C} \right) + P\left( {B\overline A \overline C } \right)\)
\( = 0,7 \cdot 0,3 + 0,7 \cdot 0,5 + 0,3 \cdot 0,2 + 0,3 \cdot 0,1 = 0,65\).
Suy ra \[P\left( {\overline C \left| B \right.} \right) = \frac{{0,24}}{{0,65}} \approx 0,37\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Do phân xưởng thứ nhất sản xuất \(60{\rm{\% }}\) tổng số sản phẩm của cả nhà máy nên xác suất để sản phẩm đó do phân xưởng thứ nhất sản xuất là 0,6.
b) Đúng. Gọi A là biến cố “Chọn được sản phẩm từ phân xưởng thứ nhất”,
\(\overline A \) là biến cố “Chọn được sản phẩm từ phân xưởng thứ hai”.
B là biến cố “Chọn được sản phẩm là phế phẩm”.
Khi đó: \(P\left( A \right) = 0,6;P\left( {\overline A } \right) = 0,4\);
\(P\left( {B\mid A} \right) = 0,16;P\left( {\overline B \mid A} \right) = 0,84;P\left( {B\mid \overline A } \right) = 0,2\).
Áp dụng công thức tính xác suất tính xác suất toàn phần, ta có:
\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B\mid \overline A } \right)\)
\( = 0,6.0,16 + 0,4.0,2 = 0,176\).
Vậy xác suất lấy được phế phẩm là 0,176.
c) Đúng. Chọn được phế phẩm, biến cố phế phẩm đó do phân xưởng thứ nhất sản xuất là \(A\mid B\), áp dụng công thức Bayes, ta được:
\(P\left( {A\mid B} \right) = \frac{{P\left( A \right).P\left( {B\mid A} \right)}}{{P\left( B \right)}} = \frac{{0,6.0,16}}{{0,176}} = \frac{6}{{11}} \approx 0,55\).
d) Sai. Khi lấy được sản phẩm tốt, để so sánh khả năng sản phẩm thuộc phân xưởng, ta tính xác suất để sản phẩm tốt được chọn ấy thuộc phân xưởng thứ nhất
Từ ý a) suy ra \(P\left( {\overline B } \right) = 1 - 0,176 = 0,824\).
Theo công thức Bayes, ta có: \(P\left( {A\mid \overline B } \right) = \frac{{P\left( A \right).P\left( {\overline B \mid A} \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,6.0,84}}{{0,824}} \approx 0,61\).
Vậy khả năng sản phẩm tốt được chọn từ phân xưởng thứ nhất cao hơn.
Câu 2
Lời giải
Chọn B
Ta có \(P\left( {AB} \right) = P\left( {A|B} \right)P\left( B \right) = 0,5.0,8 = 0,4\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.