Câu hỏi:

07/10/2025 346 Lưu

Phần 2. Trắc nghiệm đúng sai

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Khảo sát những người xem bộ phim hoạt hình vừa được phát hành cho thấy \(70\% \) người xem là trẻ em và \(30\% \) là người lớn. Trong số các trẻ em đến xem phim có \(50\% \) yêu thích bộ phim và khẳng định sẽ đi xem tiếp phần 2, \(30\% \) yêu thích bộ phim nhưng sẽ không xem tiếp phần 2; \(20\% \) còn lại không thích bộ phim và không xem tiếp phần 2. Trong số những người lớn đi xem phim có \(20\% \) yêu thích bộ phim và khẳng định sẽ xem tiếp phần 2, \(10\% \) yêu thích bộ phim nhưng sẽ không xem tiếp phần 2; \(70\% \) còn lại không thích bộ phim và không xem tiếp phần 2. Chọn ngẫu nhiên 1 người đã xem phim.

a) Biết người được chọn là trẻ em, xác suất để người đó yêu thích bộ phim là \(0,56\).

b) Xác suất để người đó không xem tiếp phần 2 là \(0,59\).

c) Biết người đó sẽ xem tiếp phần 2 của bộ phim, xác suất để người đó là trẻ em lớn hơn \(0,85\).

d) Biết người đó yêu thích bộ phim, xác suất để người đó không xem tiếp phần 2 là \(0,37\) (làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố “Người đó là trẻ em”;

\(B\) là biến cố “Người đó thích bộ phim”;

\(C\) là biến cố “Người đó xem tiếp phần 2 bộ phim”.

Xét người đi xem là trẻ em có \(P\left( A \right) = 0,7\).

Suy ra \(P\left( {BC} \right) = 50\%  = 0,5\), \(P\left( {B\overline C } \right) = 30\%  = 0,3\), \[P\left( {\overline B \overline C } \right) = 20\%  = 0,2\], \[P\left( {\overline B C} \right) = 0\].

Xét người đi xem là người lớn có \(P\left( {\overline A } \right) = 0,3\).

\(P\left( {BC} \right) = 20\%  = 0,2\), \(P\left( {B\overline C } \right) = 10\%  = 0,1\), \[P\left( {\overline B \overline C } \right) = 70\%  = 0,7\], \[P\left( {\overline B C} \right) = 0\].

a) Sai. Ta có \(P\left( {B\left| A \right.} \right) = 0,5 + 0,3 = 0,8\).

b) Đúng. Ta có \(\overline C  = \overline C AB \cup \overline C A\overline B  \cup \overline C \overline A B \cup \overline C \overline A \overline B \).

\(P\left( {\overline C } \right) = P\left( {\overline C AB} \right) + P\left( {\overline C A\overline B } \right) + P\left( {\overline C \overline A B} \right) + P\left( {\overline C \overline A \overline B } \right)\)

\( = 0,7 \cdot 0,3 + 0,7 \cdot 0,2 + 0,3 \cdot 0,1 + 0,3 \cdot 0,7 = 0,59\).

c) Đúng. \(P\left( C \right) = 1 - P\left( {\overline C } \right) = 0,41\).

\(P\left( {A\left| C \right.} \right) = \frac{{P\left( {AC} \right)}}{{P\left( C \right)}}\).

\(P\left( {AC} \right) = P\left( {AC\overline B } \right) + P\left( {ACB} \right) = 0,7 \cdot 0 + 0,7 \cdot 0,5 = 0,35\).

Suy ra \(P\left( {A\left| C \right.} \right) = \frac{{P\left( {AC} \right)}}{{P\left( C \right)}} = \frac{{0,35}}{{0,41}} \approx 0,854 > 0,85\).

d) Đúng. \[P\left( {\overline C \left| B \right.} \right) = \frac{{P\left( {\overline C B} \right)}}{{P\left( B \right)}}\].

\(P\left( {\overline C B} \right) = P\left( {\overline C BA} \right) + P\left( {\overline C B\overline A } \right) = 0,3 \cdot 0,7 + 0,1 \cdot 0,3 = 0,24\).

\(P\left( B \right) = P\left( {BA\overline C } \right) + P\left( {BAC} \right) + P\left( {B\overline A C} \right) + P\left( {B\overline A \overline C } \right)\)

\( = 0,7 \cdot 0,3 + 0,7 \cdot 0,5 + 0,3 \cdot 0,2 + 0,3 \cdot 0,1 = 0,65\).

Suy ra \[P\left( {\overline C \left| B \right.} \right) = \frac{{0,24}}{{0,65}} \approx 0,37\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{7}{{13}}\).      
B. \(\frac{6}{{13}}\).    
C. \(\frac{4}{{13}}\).           
D. \(\frac{9}{{13}}\).

Lời giải

Chọn A

Theo công thức Bayes, ta có: \[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,2.0,7}}{{0,26}} = \frac{7}{{13}}\].

Lời giải

Gọi \[A\] là biến cố “ Chọn nhân viên có trình độ đại học” .

Gọi \[B\] là biến cố “ Chọn nhân viên bị tinh giản biên chế thông qua phỏng vấn” .

Tỷ lệ nhân viên của cơ quan thuộc hai nhóm trình độ: Đại học, Cao đẳng lần lượt là \[65\% \] và \[35\% \] nên \[P\left( A \right) = 0,65 \Rightarrow P\left( {\overline A } \right) = 0,35\].

Qua phỏng vấn thì tỷ lệ nhân viên bị tinh giản của nhóm đại học là\[10\% \], nhóm cao đẳng là \[15\% \] nên \[P\left( {B|A} \right) = 0,1\] và \[P\left( {B|\overline A } \right) = 0,15\].

Chọn một nhân viên bất kỳ đã bị tinh giản thì xác suất để người này có trình độ đại học là \[P\left( {A|B} \right).\]

Theo công thức ta có: \[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}} = \frac{{0,65.0,1}}{{0,65.0,1 + 0,35.0,15}} = 0,55\].

Đáp án: 0,55.

Câu 4

A. \(P\left( {B|A} \right) = \frac{{P\left( B \right) + P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).                      
B. \(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) - P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).
C. \(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|\overline B } \right) + P\left( {\overline B } \right)P\left( {A|B} \right)}}\).                       
D. \(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP