Phần 3. Trắc nghiệm trả lời ngắn
Trong một kì thi học sinh giỏi cấp tỉnh dành cho học sinh trung học phổ thông của một khu vực (các học sinh của cả ba khối cùng tham gia giải một đề thi), ban tổ chức thống kê kết quả thi và thu được kết quả như sau:
- Trong 500 học sinh tham gia cuộc thi, có \(60{\rm{\% }}\) học sinh đạt huy chương, trong đó có 15 học sinh đạt huy chương vàng, 80 học sinh đạt huy chương bạc, còn lại là huy chương đồng.
- Trong số 300 học sinh lớp 12 có 6 học sinh đạt huy chương vàng, 24 học sinh đạt huy chương bạc. Số học sinh đạt huy chương đồng lớp 12 chiếm \(9{\rm{\% }}\) tổng số học sinh dự thi.
Chọn ngẫu nhiên một em học sinh. Nếu biết học sinh được chọn là học sinh lớp 12 đạt huy chương thì xác suất để học sinh được chọn đạt huy chương đồng là a%. Tìm a. (Kết quả làm tròn đến hàng đơn vị).
Phần 3. Trắc nghiệm trả lời ngắn
Trong một kì thi học sinh giỏi cấp tỉnh dành cho học sinh trung học phổ thông của một khu vực (các học sinh của cả ba khối cùng tham gia giải một đề thi), ban tổ chức thống kê kết quả thi và thu được kết quả như sau:
- Trong 500 học sinh tham gia cuộc thi, có \(60{\rm{\% }}\) học sinh đạt huy chương, trong đó có 15 học sinh đạt huy chương vàng, 80 học sinh đạt huy chương bạc, còn lại là huy chương đồng.
- Trong số 300 học sinh lớp 12 có 6 học sinh đạt huy chương vàng, 24 học sinh đạt huy chương bạc. Số học sinh đạt huy chương đồng lớp 12 chiếm \(9{\rm{\% }}\) tổng số học sinh dự thi.
Chọn ngẫu nhiên một em học sinh. Nếu biết học sinh được chọn là học sinh lớp 12 đạt huy chương thì xác suất để học sinh được chọn đạt huy chương đồng là a%. Tìm a. (Kết quả làm tròn đến hàng đơn vị).
Quảng cáo
Trả lời:
Gọi các biến cố:
\({A_1}\): “Học sinh được chọn đạt huy chương vàng”;
\({A_2}\): “Học sinh được chọn đạt huy chương bạc”;
\({A_3}\): “Học sinh được chọn đạt huy chương đồng”;
B: “Học sinh được chọn học lớp 12 và đạt huy chương”.
Theo đề bài, ta có
\(P\left( {{A_1}} \right) = \frac{{15}}{{500}} = 0,03;P\left( {{A_2}} \right) = \frac{{80}}{{500}} = 0,16;\)
\(P\left( {{A_3}} \right) = \frac{{500.60{\rm{\% }} - \left( {15 + 80} \right)}}{{500}} = 0,41\);
\(P\left( {B\mid {A_1}} \right) = \frac{6}{{300}} = 0,02;P\left( {B\mid {A_2}} \right) = \frac{{24}}{{300}} = 0,08;P\left( {B\mid {A_3}} \right) = \frac{{500.9{\rm{\% }}}}{{300}} = 0,15\).
Do đó, theo công thức Bayes, xác suất chọn được một học sinh đạt huy chương đồng nếu biết học sinh đó là học sinh lớp 12 và đạt huy chương là
\(P\left( {{A_3}\mid B} \right) = \frac{{P\left( {B\mid {A_3}} \right).P\left( {{A_3}} \right)}}{{P\left( {B\mid {A_1}} \right).P\left( {{A_1}} \right) + P\left( {B\mid {A_2}} \right).P\left( {{A_2}} \right) + P\left( {B\mid {A_3}} \right).P\left( {{A_3}} \right)}}\)
\( = \frac{{0,15.0,41}}{{0,02.0,03 + 0,08.0,16 + 0,15.0,41}} \approx 82{\rm{\% }}\).
Vậy \(a = 82\).
Đáp án: 82.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Có ba đồng xu được đựng trong một hộp kín. Đồng xu thứ nhất là một đồng xu cân đối với tỷ lệ mặt ngửa và mặt sấp bằng nhau. Đồng xu thứ hai là một đồng xu bị lỗi có khả năng mặt ngửa xuất hiện là 70%. Đồng xu thứ ba là một đồng xu hai mặt ngửa (khi tung luôn ra mặt ngửa). Bạn An lấy ngẫu nhiên một đồng xu từ hộp và tung nó hai lần. Kết quả của hai lần tung cho thấy xuất hiện một lần mặt sấp và một lần mặt ngửa. Tính xác suất để đồng xu bạn đã chọn là đồng xu thứ hai (đồng xu bị lỗi) (Kết quả làm tròn đến hàng phần trăm).
Lời giải
Gọi \(A\) là biến cố chọn đồng xu thứ \(n\,\,\left( {n = 1;\,2;\,3} \right)\).
\(B\) là biến cố tung hai lần thì thấy xuất hiện một lần mặt sấp và một lần mặt ngửa.
Vì chọn ngẫu nhiên nên \(P\left( {{A_1}} \right) = P\left( {{A_2}} \right) = P\left( {{A_3}} \right) = \frac{1}{3}\).
Lấy ngẫu nhiên một đồng xu tung hai lần được một mặt sấp và một mặt ngửa thì ta có ba trường hợp như sau:
Trường hợp 1: Chọn được đồng xu thứ nhất là S-N và N-S nên \(P\left( {B|{A_1}} \right) = 2.{\left( {\frac{1}{2}} \right)^2} = \frac{1}{2}\).
Trường hợp 2: Chọn được đồng xu thứ hai là S-N và N-S nên ta có:
\(P\left( {B|{A_2}} \right) = 0,7.0,3 + 0,3.0,7 = 0,42\).
Trường hợp 3: Chọn được đồng xu thứ ba là N-N nên \(P\left( {B|{A_3}} \right) = 0\).
Áp dụng công thức Bayes ta tính được xác suất chọn được đồng xu thứ hai là:
\(P\left( {{A_2}|B} \right) = \frac{{P\left( {B|{A_2}} \right).P\left( {{A_2}} \right)}}{{P\left( {{A_1}} \right).P\left( {B|{A_1}} \right) + P\left( {{A_2}} \right).P\left( {B|{A_2}} \right) + P\left( {{A_3}} \right).P\left( {B|{A_3}} \right)}} = \frac{{0,42.\frac{1}{3}}}{{\frac{1}{3}.\frac{1}{2} + 0,42.\frac{1}{3} + 0.\frac{1}{3}}} \approx 0,46\).
Vậy xác suất chọn được đồng xu thứ hai là \(0,46\).
Đáp án: 0,46.
Câu 2
Lời giải
Chọn A
Theo công thức Bayes, ta có: \[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,2.0,7}}{{0,26}} = \frac{7}{{13}}\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.