Câu hỏi:

07/10/2025 163 Lưu

Một cơ quan hành chính nhà nước thực hiện việc tinh giản biên chế thông qua phỏng vấn. Tỷ lệ nhân viên của cơ quan thuộc hai nhóm trình độ: Đại học, Cao đẳng lần lượt là \[65\% \] và \[35\% \]. Qua phỏng vấn thì tỷ lệ nhân viên bị tinh giản của nhóm đại học là\[10\% \], nhóm cao đẳng là \[15\% \]. Chọn một nhân viên bất kỳ đã bị tinh giản thì hãy tính xác suất để người này có trình độ đại học (kết quả là một số thập phân nhỏ hơn 1 đã làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \[A\] là biến cố “ Chọn nhân viên có trình độ đại học” .

Gọi \[B\] là biến cố “ Chọn nhân viên bị tinh giản biên chế thông qua phỏng vấn” .

Tỷ lệ nhân viên của cơ quan thuộc hai nhóm trình độ: Đại học, Cao đẳng lần lượt là \[65\% \] và \[35\% \] nên \[P\left( A \right) = 0,65 \Rightarrow P\left( {\overline A } \right) = 0,35\].

Qua phỏng vấn thì tỷ lệ nhân viên bị tinh giản của nhóm đại học là\[10\% \], nhóm cao đẳng là \[15\% \] nên \[P\left( {B|A} \right) = 0,1\] và \[P\left( {B|\overline A } \right) = 0,15\].

Chọn một nhân viên bất kỳ đã bị tinh giản thì xác suất để người này có trình độ đại học là \[P\left( {A|B} \right).\]

Theo công thức ta có: \[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}} = \frac{{0,65.0,1}}{{0,65.0,1 + 0,35.0,15}} = 0,55\].

Đáp án: 0,55.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố “Người đó là trẻ em”;

\(B\) là biến cố “Người đó thích bộ phim”;

\(C\) là biến cố “Người đó xem tiếp phần 2 bộ phim”.

Xét người đi xem là trẻ em có \(P\left( A \right) = 0,7\).

Suy ra \(P\left( {BC} \right) = 50\%  = 0,5\), \(P\left( {B\overline C } \right) = 30\%  = 0,3\), \[P\left( {\overline B \overline C } \right) = 20\%  = 0,2\], \[P\left( {\overline B C} \right) = 0\].

Xét người đi xem là người lớn có \(P\left( {\overline A } \right) = 0,3\).

\(P\left( {BC} \right) = 20\%  = 0,2\), \(P\left( {B\overline C } \right) = 10\%  = 0,1\), \[P\left( {\overline B \overline C } \right) = 70\%  = 0,7\], \[P\left( {\overline B C} \right) = 0\].

a) Sai. Ta có \(P\left( {B\left| A \right.} \right) = 0,5 + 0,3 = 0,8\).

b) Đúng. Ta có \(\overline C  = \overline C AB \cup \overline C A\overline B  \cup \overline C \overline A B \cup \overline C \overline A \overline B \).

\(P\left( {\overline C } \right) = P\left( {\overline C AB} \right) + P\left( {\overline C A\overline B } \right) + P\left( {\overline C \overline A B} \right) + P\left( {\overline C \overline A \overline B } \right)\)

\( = 0,7 \cdot 0,3 + 0,7 \cdot 0,2 + 0,3 \cdot 0,1 + 0,3 \cdot 0,7 = 0,59\).

c) Đúng. \(P\left( C \right) = 1 - P\left( {\overline C } \right) = 0,41\).

\(P\left( {A\left| C \right.} \right) = \frac{{P\left( {AC} \right)}}{{P\left( C \right)}}\).

\(P\left( {AC} \right) = P\left( {AC\overline B } \right) + P\left( {ACB} \right) = 0,7 \cdot 0 + 0,7 \cdot 0,5 = 0,35\).

Suy ra \(P\left( {A\left| C \right.} \right) = \frac{{P\left( {AC} \right)}}{{P\left( C \right)}} = \frac{{0,35}}{{0,41}} \approx 0,854 > 0,85\).

d) Đúng. \[P\left( {\overline C \left| B \right.} \right) = \frac{{P\left( {\overline C B} \right)}}{{P\left( B \right)}}\].

\(P\left( {\overline C B} \right) = P\left( {\overline C BA} \right) + P\left( {\overline C B\overline A } \right) = 0,3 \cdot 0,7 + 0,1 \cdot 0,3 = 0,24\).

\(P\left( B \right) = P\left( {BA\overline C } \right) + P\left( {BAC} \right) + P\left( {B\overline A C} \right) + P\left( {B\overline A \overline C } \right)\)

\( = 0,7 \cdot 0,3 + 0,7 \cdot 0,5 + 0,3 \cdot 0,2 + 0,3 \cdot 0,1 = 0,65\).

Suy ra \[P\left( {\overline C \left| B \right.} \right) = \frac{{0,24}}{{0,65}} \approx 0,37\].

Câu 2

A. \(\frac{7}{{13}}\).      
B. \(\frac{6}{{13}}\).    
C. \(\frac{4}{{13}}\).           
D. \(\frac{9}{{13}}\).

Lời giải

Chọn A

Theo công thức Bayes, ta có: \[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,2.0,7}}{{0,26}} = \frac{7}{{13}}\].

Câu 4

A. \(P\left( {B|A} \right) = \frac{{P\left( B \right) + P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).                      
B. \(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) - P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).
C. \(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|\overline B } \right) + P\left( {\overline B } \right)P\left( {A|B} \right)}}\).                       
D. \(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP