Câu hỏi:

08/10/2025 353 Lưu

Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao \[250\]km so với bề mặt của Mặt Trăng. Trong khoảng \(50\) giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao \(h\) của con tàu so với bề mặt của Mặt Trăng được tính (gần đúng) bởi hàm \(h\left( t \right) = - 0,01{t^3} + 1,1{t^2} - 30t + 250\) trong đó \(t\) là thời gian tính bằng giây và \(h\) là độ cao tính bằng kilomet.

(a)Trong \(50\) giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao lớn nhất mà con tàu đạt được là \(250\)(km).

(b)Trong \(50\) giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao thấp nhất mà con tàu đạt được tại thời điểm \(t \approx 25\)(s).

(c)Trong \(50\) giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, vận tốc của con tàu lớn nhất mà con tàu đạt được là \(10,33\,\)(km/s).

(d)Trong \(50\) giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao con tàu đạt được khi vận tốc của con tàu lớn nhất là \(139,37\,\)(km).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

\(h\left( t \right) = - 0,01{t^3} + 1,1{t^2} - 30t + 250 \Rightarrow h'\left( t \right) = - 0,03{t^2} + 2,2t - 30 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 55 \notin \left( {0;50} \right)\\t = 18 \in \left( {0;50} \right)\end{array} \right.\)

index_html_5e5773ffd30670d7.png

b) Sai. Dựa vào bảng biến thiên trên ta thấy trong \(50\) giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao thấp nhất mà con tàu đạt được tại thời điểm \(t \approx 18\left( {\rm{s}} \right)\).

c) Đúng.\(h\left( t \right) = - 0,01{t^3} + 1,1{t^2} - 30t + 250 \Rightarrow v\left( t \right) = h'\left( t \right) = - 0,03{t^2} + 2,2t - 30\)

\( \Rightarrow a\left( t \right) = v'\left( t \right) = - 0,06t + 2,2 = 0 \Leftrightarrow t \approx 37\).

index_html_1dae45f8fc6e0551.png

Vận tốc của con tàu lớn nhất mà con tàu đạt được là \(10,33\,\,\left( {{\rm{km/s}}} \right)\).

d) Sai.\(h\left( t \right) = - 0,01{t^3} + 1,1{t^2} - 30t + 250 \Rightarrow v\left( t \right) = h'\left( t \right) = - 0,03{t^2} + 2,2t - 30\)

\( \Rightarrow a\left( t \right) = v'\left( t \right) = - 0,06t + 2,2 = 0 \Leftrightarrow t \approx 37\).

index_html_1dae45f8fc6e0551.png

Khi đó: \({v_{{\rm{max}}}} = 10,33 \Leftrightarrow t \approx 37;\,\,\,\,h\left( {37} \right) = 139,37\)km.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hàm số \(C = \frac{{19200000}}{{{x^2}}} + \frac{{27x}}{{x + 3000}},\,\,\left( {x \ge 1} \right)\) là chi phí đặt hàng và vận chuyển một linh kiện

Ta có \(C' = - \frac{{38400000}}{{{x^3}}} + \frac{{81000}}{{{{\left( {x + 3000} \right)}^2}}}\).

Cho \(C' = 0 \Leftrightarrow 12800{\left( {x + 3000} \right)^2} - 27{x^3} = 0 \Leftrightarrow x = 2400\).

Lập BBT cho hàm số trên nửa khoảng \(\left[ {1; + \infty } \right)\) ta thu được \({C_{\min }}\) khi \(x = 2400\).

Đáp án: 2400.

Câu 2

Hàm số không đạt cực tiểu tại điểm \(x = 2\).

Hàm số đạt cực đại tại điểm \(x = - 1\).

Điểm cực đại của đồ thị hàm số là \(\left( { - 1;2} \right)\).

Giá trị cực đại của hàm số là \(y = 2\).

Lời giải

Chọn A

Dựa vào BBT ta thấy hàm số đạt cực tiểu tại \(x = 2\).

Câu 5

\(\left( { - \infty ; - 1} \right)\).

\(\left( { - 1;0} \right)\).

\(\left( { - 1;1} \right)\).

\(\left( {0;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP