Câu hỏi:

09/10/2025 8 Lưu

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Lập mệnh đề phủ định của mỗi mệnh đề sau và nhận xét tính đúng sai của mệnh đề phủ định đó.

P: "5,15 là một số hữu ti”";

Q: "2023 là số chẵn”.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Mệnh đề phủ định của mệnh đề \({\rm{P}}\) là \(\overline P \): “5,15 không phải là một số hữu ti”"

Mệnh đề \({\rm{P}}\) đúng, \(\overline P \) sai vì \(5,15 = \frac{{103}}{{20}} \in \mathbb{Q}\), là một số hữu tỉ.

Mệnh đề phủ định của mệnh đề Q là \(\overline Q \): “2 023 không phải là số chẵn” (hoặc "2 023 là số lẻ”)

Mệnh đề \({\rm{Q}}\) sai, \(\overline Q \) đúng vì 2023 có chữ số tận cùng là \(3 \ne \left\{ {0;2;4;6;8} \right\}\), đo đó 2023 không phải là số chẵn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Sai

a) Số học sinh thích chơi cả hai môn câu lông và bóng đá: \(40 - (18 + 13) = 9\) (học sinh).

b) Số học sinh thích bóng đá: \(13 + 9 = 22\) (học sinh).

c) Số học sinh thích câu lông: \(18 + 9 = 27\) (học sinh).

d) Số học sinh thích chơi cả hai môn câu lông và bóng đá: \(40 - (18 + 13) = 9\) (học sinh).

Câu 2

A. 15.                         
B. 16.                       
C. 22.                             
D. 25.

Lời giải

Chọn A

Số tập con có 2 phần tử trong đó có phần tử a là 5 tập \(\left\{ {a;b} \right\},\left\{ {a;c} \right\},\left\{ {a;d} \right\},\left\{ {a;e} \right\},\left\{ {a,f} \right\}\).

Số tập con có 2 phần tử mà luôn có phần tử b nhưng không có phần tử a là 4 tập: \(\left\{ {b;c} \right\}\), \(\left\{ {b;d} \right\}\), \(\left\{ {b;e} \right\}\), \(\left\{ {b;f} \right\}\).

Tương tự ta có tất cả \(5 + 4 + 3 + 2 + 1 = 15\) tập.

Câu 3

A. 5.                           
B. 6.                         
C. 7.                               
D. 8.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP