Câu hỏi:

09/10/2025 189 Lưu

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Xét tính đúng, sai của các mệnh đề sau

a) \(\frac{{ - 1}}{7}x - \frac{y}{3} \le 8\)là bất phương trình bậc nhất hai ẩn;

b) \(\sqrt 2 {x^2} - 5\sqrt y \ge 8\)là bất phương trình bậc nhất hai ẩn;

c) \(2\frac{1}{x} - 5\frac{1}{y} > 8\)là bất phương trình bậc nhất hai ẩn;

d) \(\frac{2}{{ - 5}}x - {5^2}y \le - \sqrt {15} \)là bất phương trình bậc nhất hai ẩn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Sai

c) Sai

d) Đúng

 Các bất phương trình bậc nhất hai ẩn là: \(\frac{{ - 1}}{7}x - \frac{y}{3} \le 8\)\(\frac{2}{{ - 5}}x - {5^2}y \le - \sqrt {15} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x,y(xe)\) lần lượt là số xe loại \(A\)\(B\) cần thuê.

Khi đó, số tiền cần bỏ ra để thuê xe là \(F(x;y) = 5x + 4y\) (triệu đồng)

Ta có \(x\) xe loại \(A\) chở được \(30x\) người và \(0,8x\) tấn hàng; \(y\) xe loại \(B\) chở được \(20y\) người và \(1,6y\) tấn hàng.

Suy ra \(x\) xe loại \(A\)\(y\) xe loại \(B\) chở được \(30x + 20y\) người và \(0,8x + 1,6y\) tấn hàng.

Ta có hệ bất phương trình sau: \(\left\{ {\begin{array}{*{20}{l}}{30x + 20y \ge 180}\\{0,8x + 1,6y \ge 8}\\{0 \le x \le 10}\\{0 \le y \le 9}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3x + 2y \ge 18}\\{x + 2y \ge 10}\\{0 \le x \le 10}\\{0 \le y \le 9}\end{array}} \right.} \right.\) (*)

Bài toán trở thành tìm giá trị nhỏ nhất của \(F(x;y)\) trên miền nghiệm của hệ (*).

Miền nghiệm của hệ \((*)\) là tứ giác \(ABCD\) (kể cả bờ)

Trong một đợt dã ngoại, một trường học cần thuê xe chở 180 người và 8 tấn hàng. Nơi thuê xe có hai loại xe A và B, trong đó xe A có 10 chiếc và xe B có 9 chiếc. (ảnh 1)

Tìm tọa độ các điểm \(A,B,C,D\).

Tọa độ điểm \(A\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{3x + 2y - 18 = 0}\\{y = 9}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 0}\\{y = 9}\end{array}} \right.} \right.\). Vậy \(A(0;9)\).

Tọa độ điểm \(B\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{3x + 2y - 18 = 0}\\{x + 2y - 10 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 4}\\{y = 3}\end{array}} \right.} \right.\). Vậy \(B(4;3)\).

Tọa độ điểm \(C\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 10}\\{x + 2y - 10 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 10}\\{y = 0}\end{array}} \right.} \right.\). Vậy \(C(10;0)\).

Tọa độ điểm \(D\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 10}\\{y = 9}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 10}\\{y = 9}\end{array}} \right.} \right.\). Vậy \(D(10;9)\).

Ta thấy \(F(x;y) = 5x + 4y\) đạt giá trị nhỏ nhất chỉ có thể tại các điểm \(A,B,C,D\).

Tại \(A(0;9)\) thì \(F = 36\) (triệu đồng).

Tại \(B(4;3)\) thì \(F = 32\) (triệu đồng).

Tại \(C(10;0)\) thì \(F = 50\) (triệu đồng).

Tại \(D(10;9)\) thì \(F = 86\) (triệu đồng).

Như vậy để chi phí thấp nhất cần thuê 4 xe loại \(A\) và 3 xe loại \(B\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP