Câu hỏi:

09/10/2025 274 Lưu

An thích ăn hai loại trái cây là cam và xoài, mỗi tuần mẹ cho An 200000 đồng để mua trái cây. Biết rằng giá cam là 15000 đồng/ 1 kg, giá xoài là 30000 đồng/1 kg. Gọi \(x,y\) lần lượt là số ki-lô-gam cam và xoài mà An có thể mua về sử dụng trong một tuần.  Khi đó:

a) Trong tuần, số tiền An có thể mua cam là \(15000x\), số tiền An có thể mua xoài là \(30000y(x,y > 0)\).

b) Bất phương trình bậc nhất cho hai ẩn \(x,y\) là \(3x + 6y \ge 40\)

c) Cặp số \((5;4)\) thỏa mãn bất phương trình bậc nhất cho hai ẩn \(x,y\)

d) An có thể mua \(4kg\) cam, \(5\;kg\) xoài trong tuần.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Sai

c) Đúng

d) Sai

 

a) Trong tuần, số tiền An có thể mua cam là \(15000x\), số tiền An có thể mua xoài là \(30000y(x,y > 0)\).

b) Ta có bất phương trình: .

c) Xét \(x = 5,y = 4\), thay vào bất phương trình: (đúng) nên \((5;4)\) là một nghiệm của (*).

d) An có thể mua \(5\;kg\) cam, \(4\;kg\) xoài trong tuần.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x là số kilôgam sản phẩm \(P\), y là số kilôgam sản phẩm \(Q\) cân sản xuất. Ta có hệ bất phương trình: \(2x + 2y \le 10;2y \le 4;2x + 4y \le 12;x \ge 0;y \ge 0\).

Biểu diễn miền nghiệm của hệ bất phương trình trên hệ trục toạ độ Oxy, ta được như hình trên.

Một người dùng ba loại nguyên liệu \(A,B,C\) để sản xuất ra hai loại sản phẩm \(P\) và \(Q\). Để sản xuất \(1\;kg\) mỗi loại sản phẩm \(P\) hoặc \(Q\) phải dùng một số kilôgam nguyên liệu khác nhau. (ảnh 1)

Miền nghiệm là miền ngũ giác \(OCBAD\), các đỉnh: \(O(0;0);C(0;2);B(2;2);A(4;1)\); \(D(5;0)\)

Gọi F là số tiên lãi (đơn vị: triệu đồng) thu được, ta có: \(F = 3x + 5y\).

Tính giá trị của \(F\) tại các đỉnh của ngũ giác:

Tại \(O(0;0):F = 3.0 + 5.0 = 0;\quad \) Tại \(C(0;2):F = 3.0 + 5.2 = 10\);

Tại \(B(2;2):F = 3.2 + 5.2 = 16;\quad \) Tại \(A(4,1):F = 3.4 + 5.1 = 17\);

Tại \(D(5;0):F = 3.5 + 5.0 = 15\). \(\quad F\) đạt giá trị lớn nhất bằng 17 tại \(A(4;1)\).

Vậy cân sản xuất \(4\;kg\) sản phẩm \(P\) và 1 kg sản phẩm \(Q\) để có lãi cao nhất là 17 triệu đồng.

Lời giải

Gọi \(x,y\) lần lượt là số ha trồng dứa và củ đậu. Điều kiện: . Tổng diện tích trồng là \(x + y\) (ha); tổng số công cần thiết là \(20x + 30y\) (công). Số tiền thu được là \(T(x,y) = 3x + 4y\)

Ta có hệ bất phương trình

Miền nghiệm của hệ \((*)\) là miền tứ giác \(OABC\) (kề cả biên) với \(O(0;0)A(0;6),B(6;2),C(0;8)\)

Một hộ nông dân định trồng dứa và củ đậu trên diện tích 8 ha. Trên diện tích mỗi ha, nếu trồng dứa thì cần 20 công và thu 3 triệu đồng, nếu trồng củ đậu thì cần 30 công và thu 4 triệu đồng.  (ảnh 1)

Khi đó \(T(x,y)\) đạt cực đại tại một trong các đỉnh của tứ giác \(OABC\).

Ta có: \(T(0,0) = 0;T(0;6) = 24;T(6;2) = 26;T(8;0) = 24\).

Vậy giá trị lớn nhất của \(T(x,y)\) bằng 26 (triệu đồng), khi đó \(x = 6,y = 2\) (tức là hộ nông dân cần trồng \(6ha\) dứa và \(2ha\) củ đậu để có thể thu lại số tiền nhiều nhất).

Câu 6

A. \(A\left( {1\,\,;\,\,1} \right).\)                   
B. \(B\left( {1\,\,;\,\,5} \right).\)   
C. \(C\left( {4\,\,;\,\,3} \right).\)                         
D. \(D\left( {0\,\,;\,\,4} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left( { - 2;1} \right)\].                            
B. \[\left( {2;3} \right)\].             
C. \[\left( {2; - 1} \right)\].                         
D. \[\left( {0;0} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP