Một công ty viễn thông tính phí 1 nghìn đồng mỗi phút gọi nội mạng và 2 nghìn đồng mỗi phút gọi ngoại mạng. Gọi \(x\) và \(y\) lần lượt là số phút gọi nội mạng, ngoại mạng của Bình trong một tháng và Bình muốn số tiền phải trả cho tồng đài luôn thấp hơn 100 nghìn đồng.  Khi đó:
a) Số tiền phải trả cho cuộc gọi nội mạng mỗi tháng là \(x\) (nghìn đồng), số tiền phải trả cho cuộc gọi ngoại mạng mỗi tháng là \(2y\) (nghìn đồng). Điều kiện: \(x \in \mathbb{N},y \in \mathbb{N}\).
b) Bất phương trình bậc nhất gồm hai ẩn số \(x,y\) đã cho là \[x + 2y < 100\].
c) \(x = 50,y = 20\) nghiệm của bất phương trình bậc nhất gồm hai ẩn số \(x,y\) đã cho.
d) Miền nghiệm của bất phương trình bậc nhất gồm hai ẩn số \(x,y\) đã cho là một hình vuông
                                    
                                                                                                                        Một công ty viễn thông tính phí 1 nghìn đồng mỗi phút gọi nội mạng và 2 nghìn đồng mỗi phút gọi ngoại mạng. Gọi \(x\) và \(y\) lần lượt là số phút gọi nội mạng, ngoại mạng của Bình trong một tháng và Bình muốn số tiền phải trả cho tồng đài luôn thấp hơn 100 nghìn đồng. Khi đó:
a) Số tiền phải trả cho cuộc gọi nội mạng mỗi tháng là \(x\) (nghìn đồng), số tiền phải trả cho cuộc gọi ngoại mạng mỗi tháng là \(2y\) (nghìn đồng). Điều kiện: \(x \in \mathbb{N},y \in \mathbb{N}\).
b) Bất phương trình bậc nhất gồm hai ẩn số \(x,y\) đã cho là \[x + 2y < 100\].
c) \(x = 50,y = 20\) nghiệm của bất phương trình bậc nhất gồm hai ẩn số \(x,y\) đã cho.
d) Miền nghiệm của bất phương trình bậc nhất gồm hai ẩn số \(x,y\) đã cho là một hình vuông
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    | a) Đúng | b) Đúng | c) Đúng | d) Sai | 
a) Số tiền phải trả cho cuộc gọi nội mạng mỗi tháng là \(x\) (nghìn đồng), số tiền phải trả cho cuộc gọi ngoại mạng mỗi tháng là \(2y\) (nghìn đồng). Điều kiện: \(x \in \mathbb{N},y \in \mathbb{N}\).
b) Ta có bất phương trình: \(x + 2y < 100\quad (*)\).
c) Xét \(x = 50,y = 20\), thay vào \((*):50 + 2.20 < 100\) (đúng), suy ra \((50;20)\) là một nghiệm của (*).
d) Biểu diễn miền nghiệm của \((*)\) trên hệ trục tọa độ: Vẽ đường thẳng \(x + 2y = 100\) theo bảng giá trị:
| \(x\) | 0 | 100 | 
| \(y\) | \(50\) | 0 | 
Ta thấy điểm \(O(0;0)\) thuộc miền nghiệm của (*) do thay tọa độ \(O\) vào (*): \(0 < 100\) (đúng).
Vậy miền nghiệm của bất phương trình \(\left( * \right):x + 2y < 100\) là nửa mặt phẳng (không kể d) có chứa điểm \(O\) (phần không gạch chéo trên hình).

Trong thực tế, vì \(x \in \mathbb{N},y \in \mathbb{N}\) nên ta chỉ xét miền nghiệm bất phương trình ứng với miền tam giác \(OAB\) mà thôi.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi x là số kilôgam sản phẩm \(P\), y là số kilôgam sản phẩm \(Q\) cân sản xuất. Ta có hệ bất phương trình: \(2x + 2y \le 10;2y \le 4;2x + 4y \le 12;x \ge 0;y \ge 0\).
Biểu diễn miền nghiệm của hệ bất phương trình trên hệ trục toạ độ Oxy, ta được như hình trên.

Miền nghiệm là miền ngũ giác \(OCBAD\), các đỉnh: \(O(0;0);C(0;2);B(2;2);A(4;1)\); \(D(5;0)\)
Gọi F là số tiên lãi (đơn vị: triệu đồng) thu được, ta có: \(F = 3x + 5y\).
Tính giá trị của \(F\) tại các đỉnh của ngũ giác:
Tại \(O(0;0):F = 3.0 + 5.0 = 0;\quad \) Tại \(C(0;2):F = 3.0 + 5.2 = 10\);
Tại \(B(2;2):F = 3.2 + 5.2 = 16;\quad \) Tại \(A(4,1):F = 3.4 + 5.1 = 17\);
Tại \(D(5;0):F = 3.5 + 5.0 = 15\). \(\quad F\) đạt giá trị lớn nhất bằng 17 tại \(A(4;1)\).
Vậy cân sản xuất \(4\;kg\) sản phẩm \(P\) và 1 kg sản phẩm \(Q\) để có lãi cao nhất là 17 triệu đồng.
Lời giải
Gọi x, y lần lượt là số giờ nên cho phân xưởng \(A\) và \(B\). Ta có bài toán \(F = 600000x + 1000000y \to \min F\) thỏa
Miền ràng buộc \(D\) của bài toán được biểu diễn bằng cách vẽ đồ thị bất phương trình (1) và \((2)\) và (3) tạo thành miền kín rồi lấy các điểm giao nhau làm tọa độ điểm đỉnh. Đỉnh nào làm cho \(F\) nhỏ nhất thì thỏa yêu cầu bài toán.

Qua vẽ hình ta tình được phương án tối ưu là \(x = 10,y = 10\)
Vậy để thõa mãn yêu cầu đặt hằng với chi phí thấp nhất công ty cần cho phân xưởng \(A\) và \(B\) hoạt động 10 giờ. Chí phí thấp nhất là 16000000 đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
                            Miền nghiệm của bất phương trình \[x - 2 + 2\left( {y - 1} \right) > 2x + 4\] chứa điểm nào sau đây?                 
                        
                    
                Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 Nhắn tin Zalo
 Nhắn tin Zalo