Một công ty viễn thông tính phí 1 nghìn đồng mỗi phút gọi nội mạng và 2 nghìn đồng mỗi phút gọi ngoại mạng. Gọi \(x\) và \(y\) lần lượt là số phút gọi nội mạng, ngoại mạng của Bình trong một tháng và Bình muốn số tiền phải trả cho tồng đài luôn thấp hơn 100 nghìn đồng. Khi đó:
a) Số tiền phải trả cho cuộc gọi nội mạng mỗi tháng là \(x\) (nghìn đồng), số tiền phải trả cho cuộc gọi ngoại mạng mỗi tháng là \(2y\) (nghìn đồng). Điều kiện: \(x \in \mathbb{N},y \in \mathbb{N}\).
b) Bất phương trình bậc nhất gồm hai ẩn số \(x,y\) đã cho là \[x + 2y < 100\].
c) \(x = 50,y = 20\) nghiệm của bất phương trình bậc nhất gồm hai ẩn số \(x,y\) đã cho.
d) Miền nghiệm của bất phương trình bậc nhất gồm hai ẩn số \(x,y\) đã cho là một hình vuông
Một công ty viễn thông tính phí 1 nghìn đồng mỗi phút gọi nội mạng và 2 nghìn đồng mỗi phút gọi ngoại mạng. Gọi \(x\) và \(y\) lần lượt là số phút gọi nội mạng, ngoại mạng của Bình trong một tháng và Bình muốn số tiền phải trả cho tồng đài luôn thấp hơn 100 nghìn đồng. Khi đó:
a) Số tiền phải trả cho cuộc gọi nội mạng mỗi tháng là \(x\) (nghìn đồng), số tiền phải trả cho cuộc gọi ngoại mạng mỗi tháng là \(2y\) (nghìn đồng). Điều kiện: \(x \in \mathbb{N},y \in \mathbb{N}\).
b) Bất phương trình bậc nhất gồm hai ẩn số \(x,y\) đã cho là \[x + 2y < 100\].
c) \(x = 50,y = 20\) nghiệm của bất phương trình bậc nhất gồm hai ẩn số \(x,y\) đã cho.
d) Miền nghiệm của bất phương trình bậc nhất gồm hai ẩn số \(x,y\) đã cho là một hình vuông
Quảng cáo
Trả lời:
|
a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
a) Số tiền phải trả cho cuộc gọi nội mạng mỗi tháng là \(x\) (nghìn đồng), số tiền phải trả cho cuộc gọi ngoại mạng mỗi tháng là \(2y\) (nghìn đồng). Điều kiện: \(x \in \mathbb{N},y \in \mathbb{N}\).
b) Ta có bất phương trình: \(x + 2y < 100\quad (*)\).
c) Xét \(x = 50,y = 20\), thay vào \((*):50 + 2.20 < 100\) (đúng), suy ra \((50;20)\) là một nghiệm của (*).
d) Biểu diễn miền nghiệm của \((*)\) trên hệ trục tọa độ: Vẽ đường thẳng \(x + 2y = 100\) theo bảng giá trị:
|
\(x\) |
0 |
100 |
|
\(y\) |
\(50\) |
0 |
Ta thấy điểm \(O(0;0)\) thuộc miền nghiệm của (*) do thay tọa độ \(O\) vào (*): \(0 < 100\) (đúng).
Vậy miền nghiệm của bất phương trình \(\left( * \right):x + 2y < 100\) là nửa mặt phẳng (không kể d) có chứa điểm \(O\) (phần không gạch chéo trên hình).

Trong thực tế, vì \(x \in \mathbb{N},y \in \mathbb{N}\) nên ta chỉ xét miền nghiệm bất phương trình ứng với miền tam giác \(OAB\) mà thôi.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi x là số kilôgam sản phẩm \(P\), y là số kilôgam sản phẩm \(Q\) cân sản xuất. Ta có hệ bất phương trình: \(2x + 2y \le 10;2y \le 4;2x + 4y \le 12;x \ge 0;y \ge 0\).
Biểu diễn miền nghiệm của hệ bất phương trình trên hệ trục toạ độ Oxy, ta được như hình trên.

Miền nghiệm là miền ngũ giác \(OCBAD\), các đỉnh: \(O(0;0);C(0;2);B(2;2);A(4;1)\); \(D(5;0)\)
Gọi F là số tiên lãi (đơn vị: triệu đồng) thu được, ta có: \(F = 3x + 5y\).
Tính giá trị của \(F\) tại các đỉnh của ngũ giác:
Tại \(O(0;0):F = 3.0 + 5.0 = 0;\quad \) Tại \(C(0;2):F = 3.0 + 5.2 = 10\);
Tại \(B(2;2):F = 3.2 + 5.2 = 16;\quad \) Tại \(A(4,1):F = 3.4 + 5.1 = 17\);
Tại \(D(5;0):F = 3.5 + 5.0 = 15\). \(\quad F\) đạt giá trị lớn nhất bằng 17 tại \(A(4;1)\).
Vậy cân sản xuất \(4\;kg\) sản phẩm \(P\) và 1 kg sản phẩm \(Q\) để có lãi cao nhất là 17 triệu đồng.
Lời giải
Gọi \(x,y\) lần lượt là số ha trồng dứa và củ đậu. Điều kiện: . Tổng diện tích trồng là \(x + y\) (ha); tổng số công cần thiết là \(20x + 30y\) (công). Số tiền thu được là \(T(x,y) = 3x + 4y\)
Ta có hệ bất phương trình
Miền nghiệm của hệ \((*)\) là miền tứ giác \(OABC\) (kề cả biên) với \(O(0;0)A(0;6),B(6;2),C(0;8)\)

Khi đó \(T(x,y)\) đạt cực đại tại một trong các đỉnh của tứ giác \(OABC\).
Ta có: \(T(0,0) = 0;T(0;6) = 24;T(6;2) = 26;T(8;0) = 24\).
Vậy giá trị lớn nhất của \(T(x,y)\) bằng 26 (triệu đồng), khi đó \(x = 6,y = 2\) (tức là hộ nông dân cần trồng \(6ha\) dứa và \(2ha\) củ đậu để có thể thu lại số tiền nhiều nhất).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Miền nghiệm của bất phương trình \[x - 2 + 2\left( {y - 1} \right) > 2x + 4\] chứa điểm nào sau đây?
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.