Tốc độ tăng trưởng của một đàn gấu mèo tại thời điểm \(t\) tháng kể từ khi người ta thả 100 cá thể đầu tiên vào một khu rừng được ước lượng bởi công thức \(P'\left( t \right) = 8t + 30\) (con/tháng), với \(P\left( t \right)\) là số lượng cá thể trong đàn tại thời điểm \(t\) tháng tương ứng. Dựa vào tốc độ tăng trưởng đã cho, hãy ước tính số cá thể của đàn gấu mèo này tại thời điểm 3 tháng kể từ khi chúng được thả vào rừng.
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 4 có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Số lượng cá thể trong đàn gấu mèo tại thời điểm \(t\) tháng là
\(P\left( t \right) = \int {P'\left( t \right){\rm{d}}t} = \int {\left( {8t + 30} \right){\rm{d}}t} = 4{t^2} + 30t + C\left( {{\rm{con}}} \right)\).
Vì ban đầu thả 100 cá thể gấu mèo nên \(P\left( 0 \right) = 100 \Leftrightarrow C = 100 \Rightarrow P\left( t \right) = 4{t^2} + 30t + 100\) (con).
Suy ra số cá thể của đàn gấu mèo này tại thời điểm 3 tháng kể từ khi chúng được thả vào rừng là
\(P\left( 3 \right) = {4.3^2} + 30.3 + 100 = 226\,\,\left( {{\rm{con\;}}} \right)\).
Đáp án: 226.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Chi phí mua 1 sản phẩm ứng với \(x = 0\), sau ra \(C = 5000.25 = 125\,000\) (đồng).
b) Đúng. Với \(x = 1\)ta có: \(C = 5000\left( {25 + 3\int\limits_0^1 {{t^{\frac{1}{4}}}{\rm{d}}t} } \right) = 137\,000\) (đồng).
Suy ra chi phí bảo trì năm đầu tiên của sản phẩm là \(137\,000 - 125\,000 = 12\,000\) (đồng).
c) Sai. Gọi \(x\)là số năm mà số tiền bảo trì bằng số tiền mua sản phẩm. Khi đó tổng số tiền mua và số tiền bảo trì là \(2 \cdot 125\,000 = 250\,000\).
\(5000\left( {25 + 3\int\limits_0^x {{t^{\frac{1}{4}}}{\rm{d}}t} } \right) = 250\,000 \Leftrightarrow 25 + 3\left( {\frac{4}{5}{t^{\frac{5}{4}}}|_0^x} \right) = 50 \Leftrightarrow \frac{{12}}{5}{x^{\frac{5}{4}}} = 25 \Leftrightarrow x = {\left( {\frac{{75}}{2}} \right)^{\frac{4}{5}}} \approx 6,52\) năm.
d) Sai. Số tiền mua và bảo trì 1 sản phẩm trong 10 năm là:
\(C = 5000\left( {25 + 3\int\limits_0^{10} {{t^{\frac{1}{4}}}{\rm{d}}t} } \right) = 5000\left( {25 + 24\sqrt[4]{{10}}} \right) \approx 338\,393,53\) (đồng).
Ta có: \(\frac{{10\,000\,000}}{{338\,393,53}} \approx 29,55\).
Vậy với 10 triệu đồng thì họ có thể mua và bảo trì tối đa 29 sản phẩm.
Lời giải
a) Dựa vào đồ thị trong khoảng thời gian 1 giây vận tốc của chuyển động được xác định là \(v\left( t \right) = 2t\left( {{\rm{m/s}}} \right)\).
Ta có quãng đường mà vật di chuyển được trong 1 giây đầu tiên là \(s = \int\limits_0^1 {2t{\rm{d}}t} = {t^2}\mathop |\nolimits_0^1 = 1\left( {\rm{m}} \right)\).
b) Dựa vào đồ thị ta thấy: Trong khoảng thời gian 1 giây vận tốc của chuyển động được xác định là \(v\left( t \right) = 2t\left( {{\rm{m/s}}} \right)\), khoảng thời gian từ 1 giây đến 2 giây vận tốc của chuyển động được xác định là \(v\left( t \right) = 2\left( {{\rm{m/s}}} \right)\).
Ta có quãng đường mà vật di chuyển được trong 2 giây đầu tiên là:
\(s = \int\limits_0^1 {2t{\rm{d}}t} + \int\limits_1^2 {2{\rm{dt}}} = {t^2}\mathop |\nolimits_0^1 + 2t\mathop |\nolimits_1^2 = 3\left( {\rm{m}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



