Câu hỏi:

09/10/2025 11 Lưu

Biểu thức \(L = y - x\), với \(x\)\(y\) thõa mãn hệ bất phương trình \[\left\{ \begin{array}{l}2x + 3y - 6 \le 0\\x \ge 0\\2x - 3y - 1 \le 0\end{array} \right.\], đạt giá trị lớn nhất là \(a\) và đạt giá trị nhỏ nhất là \(b\). Hãy chọn kết quả đúng trong các kết quả sau:                 

A. \(a = \frac{{25}}{8}\)\(b = - 2\).     
B. \(a = 2\)\(b = - \frac{{11}}{{12}}\).               
C. \(a = 3\)\(b = 0\).             
D. \(a = 3\)\(b = \frac{{ - 9}}{8}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Vậy ta có \(a = 2 - 0 = 2,\)\ (ảnh 1)

Trước hết, ta vẽ ba đường thẳng:

\(\left( {{d_1}} \right):2x + 3y - 6 = 0\)

\(\left( {{d_2}} \right):x = 0\)

\(\left( {{d_3}} \right):2x - 3y - 1 = 0\)

Ta thấy \(\left( {0\,\,;\,\,0} \right)\) là nghiệm của cả ba bất phương trình. Điều đó có nghĩa gốc tọa độ thuộc cả ba miền nghiệm của cả ba bất phương trình. Sau khi gạch bỏ các miền không thích hợp, miền không bị gạch là miền nghiệm của hệ (kể cả biên).

Miền nghiệm là hình tam giác \(ABC\) (kể cả biên), với \(A\left( {0\,\,;\,\,2} \right),\)\(B\left( {\frac{7}{4}\,\,;\,\,\frac{5}{6}} \right),\)\(C\left( {0\,\,;\,\, - \frac{1}{3}} \right).\)

Vậy ta có \(a = 2 - 0 = 2,\)\(b = \frac{5}{6} - \frac{7}{4} =  - \frac{{11}}{{12}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Miền nghiệm của hệ (I) là miền tứ giác \(ABCD\) với \(A(3;0),B(5;1),C(1;5),D(1;3)\) (Hình).

Cho hệ bất phương trình: \(\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}3x + 2y \ge 9\\x - 2y \le 3\\x + y \le 6\\x\quad  \ge 1\end{array}\end{array}} \right.\left( I \right)\). Khi đó: (ảnh 1)

b) \((3;2)\) là một nghiệm của hệ bất phương trình

c) Tính giá trị của \(F = 3x - y\) tại các cặp số \((x;y)\) là toạ độ của các đỉnh tứ giác \(ABCD\) rồi so sánh các giá trị đó, ta được \(F\) đạt giá trị lớn nhất bằng 14 tại \(x = 5,y = 1\)

d) \(F\) đạt giá trị nhỏ nhất bằng \( - 2\) tại \(x = 1,y = 5\).

Lời giải

a) Đúng

b) Sai

c) Sai

d) Đúng

 

a) Gọi \(x,y\) (đơn vị: triệu đồng) tiền bác Minh đầu tư vào kho Ta có hệ bất phương trình:

\(\left\{ {\begin{array}{*{20}{l}}{x + y \le 240}\\{y \ge 40}\\{x \ge 3y}\end{array}} \right.\)

b) Miền nghiệm của hệ trên là miền tam giác \(ABC\) với \(A(180;60),B(120;40)\), \(C(200;40)\) ở Hình.

Bác Minh có kế hoạch đầu tư không quá 240 triệu đồng vào hai khoản \(X\) và khoản Y. Để đạt được lợi nhuận thì khoản \(Y\) phải đầu tư ít nhất 40 triệu đồng và số tiền đầu tư cho khoản \(X\) phải ít nhất gấp ba lần số tiền cho khoản \(Y\). Khi đó: (ảnh 1)

c) Điểm \(C(200;40)\) thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho

d) Điểm \(A(180;60)\) là điểm có tung độ lớn nhất thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[ - 10\].                    
B. \[12\].                     
C. \[ - 8\].                                  
D. \[ - 6\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP