Câu hỏi:

09/10/2025 22 Lưu

Bác Năm dự định trồng ngô và đậu xanh trên một mảnh đất có diện tích 8 hecta (ha). Nếu trồng 1 ha ngô thì cần 20 ngày công và thu được 40 triệu đồng. Nếu trồng 1 ha đậu xanh thì cần 30 ngày công và thu được 50 triệu đồng. Bác Năm cần trồng bao nhiêu ha cho mỗi loại cây để thu được nhiều tiền nhất? Biết rằng, bác Năm chỉ có thể sử dụng không quá 180 ngày công cho việc trồng ngô và đậu xanh.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(x\) là số hecta (ha) đất trồng ngô và y là số hecta đất trồng đậu xanh.

Ta có các điều kiện ràng buộc đối với \(x,y\) như sau: Hiển nhiên \(x \ge 0,y \ge 0\).

- Diện tích canh tác không vượt quá 8 ha nên \(x + y \le 8\).

- Số ngày công sử dụng không vượt quá 180 nên \(20x + 30y \le 180\).

Từ đó, ta có hệ bất phương trình mô tả các điều kiện ràng buộc: \(\left\{ \begin{array}{l}x + y \le 8\\20x + 30y \le 180\\x \ge 0\\y \ge 0\end{array} \right.\)

Biểu diễn miền nghiệm của hệ bất phương trình này trên hệ trục toạ độ Oxy, ta được miền tứ giác \(OABC\) (Hình). Toạ độ các đỉnh của tứ giác đó là: \(O(0;0);A(0;6);B(6;2);C(8;0)\)

Bác Năm dự định trồng ngô và đậu xanh trên một mảnh đất có diện tích 8 hecta (ha). (ảnh 1)

Gọi F là số tiền (đơn vị: triệu đồng) bác Năm thu được, ta có: \(F = 40x + 50y\).

Ta phải tìm \(x,y\) thoả mãn hệ bất phương trình sao cho \(F\) đạt giá trị lớn nhất, nghĩa là tìm giá trị lớn nhất của biểu thức \(F = 40x + 50y\) trên miền tứ giác \(OABC\).

Tính các giá trị của biểu thức \(F\) tại các đỉnh của đa giác, ta có:

Tại \(O(0;0):F = 40.0 + 50.0 = 0;\quad \) Tại \(A(0;6):F = 40.0 + 50.6 = 300\);

Tại \(B(6;2):F = 40.6 + 50.2 = 340\); \(\quad \) Tại \(C(8;0):F = 40.8 + 50.0 = 320\).

\(F\) đạt giá trị lớn nhất bằng 340 tại \(B(6;2)\).

Vậy để thu được nhiều tiền nhất, bác Năm cần trồng 6 ha ngô và 2 ha đậu xanh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Miền nghiệm của hệ (I) là miền tứ giác \(ABCD\) với \(A(3;0),B(5;1),C(1;5),D(1;3)\) (Hình).

Cho hệ bất phương trình: \(\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}3x + 2y \ge 9\\x - 2y \le 3\\x + y \le 6\\x\quad  \ge 1\end{array}\end{array}} \right.\left( I \right)\). Khi đó: (ảnh 1)

b) \((3;2)\) là một nghiệm của hệ bất phương trình

c) Tính giá trị của \(F = 3x - y\) tại các cặp số \((x;y)\) là toạ độ của các đỉnh tứ giác \(ABCD\) rồi so sánh các giá trị đó, ta được \(F\) đạt giá trị lớn nhất bằng 14 tại \(x = 5,y = 1\)

d) \(F\) đạt giá trị nhỏ nhất bằng \( - 2\) tại \(x = 1,y = 5\).

Lời giải

a) Đúng

b) Sai

c) Sai

d) Đúng

 

a) Gọi \(x,y\) (đơn vị: triệu đồng) tiền bác Minh đầu tư vào kho Ta có hệ bất phương trình:

\(\left\{ {\begin{array}{*{20}{l}}{x + y \le 240}\\{y \ge 40}\\{x \ge 3y}\end{array}} \right.\)

b) Miền nghiệm của hệ trên là miền tam giác \(ABC\) với \(A(180;60),B(120;40)\), \(C(200;40)\) ở Hình.

Bác Minh có kế hoạch đầu tư không quá 240 triệu đồng vào hai khoản \(X\) và khoản Y. Để đạt được lợi nhuận thì khoản \(Y\) phải đầu tư ít nhất 40 triệu đồng và số tiền đầu tư cho khoản \(X\) phải ít nhất gấp ba lần số tiền cho khoản \(Y\). Khi đó: (ảnh 1)

c) Điểm \(C(200;40)\) thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho

d) Điểm \(A(180;60)\) là điểm có tung độ lớn nhất thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[ - 10\].                    
B. \[12\].                     
C. \[ - 8\].                                  
D. \[ - 6\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP