Câu hỏi:

09/10/2025 22 Lưu

Cho hàm số\[f\left( x \right) = {e^x} + 2x\]. Khẳng định nào dưới đây đúng?

\[\int {f\left( x \right)} = {e^x} + 2x + C\].

\[\int {f\left( x \right){\rm{d}}x} = {e^x} + 2{x^2} + C\].

\[\int {f\left( x \right){\rm{d}}x} = {e^x} - {x^2} + C\].

\[\int {f\left( x \right){\rm{d}}x} = {e^x} + {x^2} + C\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: D

Ta có \[\int {f\left( x \right){\rm{d}}x} = \int {\left( {{e^x} + 2x} \right)} \,{\rm{d}}x = {e^x} + {x^2} + C\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \({P_A}\left( t \right)\) là số lượng khách hàng luỹ kế của công ty A với \(t\) là số tháng kể từ khi ra mắt sản phẩm (\(t > 0\)).

Ta có \[{P_A}\left( t \right) = \int {f\left( t \right)dt = \int {\left( {2t + 7} \right)} } dt = {t^2} + 7t + C\].

Công ty A bắt đầu với 0 khách hàng nên \({P_A}\left( 0 \right) = 0 \Leftrightarrow {0^2} + 7.0 + C = 0 \Leftrightarrow C = 0\).

Vậy \[{P_A}\left( t \right) = {t^2} + 7t\].

Vì công ty B bắt đầu với 10 nghìn khách hàng đặt trước sản phẩm. Sau đó, họ duy trì một tốc độ thu hút khách hàng mới ổn định là 10 nghìn khách hàng/tháng, nên số lượng khách hàng lũy kế của công ty B sau \(t\) tháng ra mắt sản phẩm là \({P_B}\left( t \right) = 10 + 10t\) (\(t > 0\)).

Ta có \({P_A}\left( t \right) = {P_B}\left( t \right) \Leftrightarrow {t^2} + 7t = 10 + 10t \Leftrightarrow \left[ \begin{array}{l}t = - 10\\t = 5\end{array} \right.\).

Vì \(t > 0\) nên \(t = 5\).

Vậy sau 5 tháng ra mắt, tổng số lượng khách hàng lũy kế của công ty A bằng tổng số lượng khách hàng lũy kế của công ty B (tính cả 10 nghìn khách hàng ban đầu).

Đáp án: 5.

Lời giải

index_html_63cafd310979154b.png

Gắn hệ trục tọa độ \[Oxy\] như hình vẽ.

Khi đó \[A\left( { - \sqrt 3 ;0} \right),B\left( {\sqrt 3 ;0} \right),C\left( {0;3} \right).\]

Parabol đi qua ba điểm \[A\left( { - \sqrt 3 ;0} \right),B\left( {\sqrt 3 ;0} \right),C\left( {0;3} \right)\] nên parabol có phương trình là \[y = - {x^2} + 3.\]

Đường tròn ngoại tiếp tam giác \[ABC\] có tâm \[O\left( {0;1} \right)\] và bán kính \[R = 2\] nên có phương trình là \[{x^2} + {\left( {y - 1} \right)^2} = 4\].

Suy ra \[y = 1 - \sqrt {4 - {x^2}} \] (Phần nằm dưới trục hoành).

Diện tích phần gạch là \[S = \int\limits_{ - \sqrt 3 }^{\sqrt 3 } {\left[ { - {x^2} + 3 - \left( {1 - \sqrt {4 - {x^2}} } \right)} \right]{\rm{d}}x} \].

Do đó diện tích phần không gạch là \[S' = \pi {.2^2} - S \approx 3,18\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right){\rm{.}}\]

Đáp án: 3,18.

Câu 4

\(S = \int\limits_0^7 {( - \sin x + {\rm{cos}}x){\rm{d}}x} \).

\[S = \int\limits_0^7 {\left| {{\rm{sin}}x - {\rm{cos}}x} \right|} {\rm{d}}x\].

\[S = \int\limits_0^7 {({\rm{sin}}x - {\rm{cos}}x){\rm{d}}x} \].

\[S = \int\limits_0^7 {({\rm{sin}}x + {\rm{cos}}x){\rm{d}}x} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

\(\int {2025\sin x\,{\rm{d}}x} = \sin 2025x + C\).

\(\int {2025\sin x\,{\rm{d}}x} = {\sin ^{2025}}x + C\).

\(\int {2025\sin x\,{\rm{d}}x} = - 2025\cos x + C\).

\(\int {2025\sin x\,{\rm{d}}x} = 2025\cos x + C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP