Câu hỏi:

09/10/2025 25 Lưu

Chuyển động nào dưới đây không phải  là chuyển động thẳng biến đổi đều?

A. Một viên bi lăn trên máng nghiêng.                     

B. Một vật rơi từ độ cao h xuống mặt đất.

C. Một ôtô chuyển động từ Hà nội tới thành phố Hồ chí minh.       

D. Một hòn đá được ném lên cao theo phương thẳng đứng

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

CHỌN C

Một ôtô chuyển động từ Hà nội tới thành phố Hồ chí minh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

CHỌN C

Quãng đường xe đi được trong giây đầu tiên \[{s_{1{\rm{d}}}} = {v_0} + \frac{1}{2}a\]

Quãng đường xe đi được trong giây cuối cùng \[{s_{1{\rm{c}}}} = \left( {{v_0}t + \frac{1}{2}a{t^2}} \right) - \left( {{v_0}(t - 1) + \frac{1}{2}a{{(t - 1)}^2}} \right) = {v_0} - at - \frac{1}{2}\]

\[\left\{ \begin{array}{l}{s_{1{\rm{d}}}} = 19{s_{1{\rm{c}}}}\\{s_{1{\rm{d}}}} + {s_{1{\rm{c}}}} = 20\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{s_{1{\rm{d}}}} = 19{\rm{ m}}\\{s_{1{\rm{c}}}} = 1{\rm{ m}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{v_0} + \frac{1}{2}a = 19\\{v_0} + at - \frac{1}{2}a = 1\end{array} \right.\] mà \(v = {v_0} + at \Rightarrow {v_0} =  - at\)

\( \Rightarrow \left\{ \begin{array}{l} - at + \frac{1}{2}a = 19\\ - \frac{1}{2}a = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}t = 10{\rm{ s}}\\a =  - 2{\rm{ m/}}{{\rm{s}}^2}\end{array} \right. \Rightarrow s = {v_0}t + \frac{1}{2}a{t^2} =  - \frac{1}{2}a{t^2} =  - \frac{1}{2} \times ( - 2) \times {10^2} = 100{\rm{ m}}\)

Lời giải

CHỌN A

Quãng đường đi được trong 10 s đầu tiên \({s_1} = 4 \times 10 + \frac{1}{2}a \times {10^2} = 40 + 50a\)

Quãng đường đi được trong 10 s tiếp theo \[{s_2} = \left( {4 \times 20 + \frac{1}{2}a \times {{20}^2}} \right) - \left( {4 \times 10 + \frac{1}{2}a \times {{10}^2}} \right) = 40 + 150a\]

\(\begin{array}{l}{s_1} - {s_2} = 5{\rm{ m}} \Rightarrow  - 100a = 5 \Rightarrow a =  - 0,02{\rm{ m/}}{{\rm{s}}^2}\\v = {v_0} + at \Rightarrow 0 = 4 - 0,02t \Rightarrow t = 200{\rm{ s}}\end{array}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP