Giá trị lớn nhất của biểu thức\[F\left( {x;y} \right) = x + 2y\], với điều kiện \(\left\{ {\begin{array}{*{20}{c}}{0 \le y \le 4}\\{x \ge 0}\\{x - y - 1 \le 0}\\{x + 2y - 10 \le 0}\end{array}} \right.\) là
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương II (có lời giải) !!
Quảng cáo
Trả lời:

Chọn C
Vẽ các đường thẳng
\({d_1}:y = 4\);
\({d_2}:x - y - 1 = 0\); \({d_3}:x + 2y - 10 = 0\);
\(Ox:y = 0;{\rm{ }}Oy:x = 0\).
Các đường thẳng trên đôi một cắt nhau tại \(A\left( {0;4} \right),O\left( {0;0} \right),B\left( {1;0} \right),C\left( {4;3} \right),D(2;4)\)Vì điểm \({M_0}\left( {1;1} \right)\)có toạ độ thoả mãn tất cả các bất pt trong hệ nên ta tô đậm các nửa mặt phẳng bờ \({d_1},{d_2},{d_3},Ox,Oy\) không chứa điểm \({M_0}\). Miền không bị tô đậm là đa giác \(OADCB\)kể cả các cạnh là miền nghiệm của hệ pt đã cho.
Kí hiệu \(F(A) = F\left( {{x_A};{y_A}} \right) = {x_A} + 2{y_A}\), ta có
\(F(A) = 8,\)\(F(O) = 0,\)\[F(B) = 1,\]\[F(C) = 10;\]\[F(D) = 10\],\(0 < 1 < 8 < 10\).
Giá trị lớn nhất cần tìm là \(10\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Điều kiện: \(0 \le x \le 2;0 \le y \le 1,5\)
Khi đó số protein có được là \(800x + 600y\) và số lipit có được là \(200x + 400y\)
Vì gia đình đó cần ít nhất 1200 đơn vị protein và 800 đơn vị lipit trong thức ăn mỗi ngày nên điều kiện tương ứng là:
\(800x + 600y \ge 1200 \Leftrightarrow 4x + 3y \ge 6{\rm{ v\`a }}200x + 400y \ge 800 \Leftrightarrow x + 2y \ge 4\)
Ta có hệ bất phương trình sau:
\(\left\{ {\begin{array}{*{20}{l}}{0 \le x \le 2}\\{0 \le y \le 1,5}\\{4x + 3y \ge 6}\\{x + 2y \ge 4}\end{array}} \right.\)(*)
Miền nghiệm của hệ trên là miền ngũ giác \(ABCDE\) kể cả các cạnh của ngũ giác.
Chi phí để mua \(x\;kg\) thịt bò và \(y\;kg\) thịt lợn là \(T = 200x + 100y\) (nghìn đồng).
Bài toán trở thành tìm giá trị nhỏ nhất của \(T(x;y) = 200x + 100y\) trên miền nghiệm của hệ \((*)\).
Tìm tọa độ các điểm \(A,B,C,D,E\).
Tọa độ điểm \(A\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{4x + 5y - 6 = 0}\\{y = \frac{3}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = \frac{3}{8}}\\{y = \frac{3}{2}}\end{array}} \right.} \right.\). Vậy \(A\left( {\frac{3}{8};\frac{3}{2}} \right)\).
Tọa độ điềm \(C\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = 0}\end{array}} \right.\). Vậy \(C(2;0)\).
Tọa độ điểm \(D\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 2}\\{x + 2y - 4 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = 1}\end{array}} \right.} \right.\). Vậy \(D(2;1)\).
Tọa độ điểm \(E\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x + 2y - 4 = 0}\\{y = \frac{3}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = \frac{3}{2}}\end{array}} \right.} \right.\). Vậy \(E\left( {1;\frac{3}{2}} \right)\).
Ta thấy \(T(x;y) = 200x + 100y\) đạt giá trị nhỏ nhất chỉ có thể tại các điểm \(A,B,C,D,E\).
Tại \(A\left( {\frac{3}{8};\frac{3}{2}} \right)\) thì \(T = 200 \cdot \frac{3}{8} + 100 \cdot \frac{3}{2} = 225\) (nghìn đồng).
Tại \(B\left( {\frac{3}{2};0} \right)\) thì \(T = 200 \cdot \frac{3}{2} + 100 \cdot 0 = 300\) (nghìn đồng).
Tại \(C(2;0)\) thì \(T = 200.2 + 100.0 = 400\) (nghìn đồng).
Tại \(D(2;1)\) thì \(T = 200.2 + 100.1 = 500\) (nghìn đồng).
Tại \(E\left( {1;\frac{3}{2}} \right)\) thì \(T = 200.1 + 100 \cdot \frac{3}{2} = 350\) (nghìn đồng).
Như vậy để chi phí bỏ ra thấp nhất mà vẫn đảm bảo nhu cầu dinh dưỡng khi \(x = \frac{3}{8}\) và \(y = \frac{3}{2} \Rightarrow 4{x^2} + {y^2} = 4 \cdot {\left( {\frac{3}{8}} \right)^2} + {\left( {\frac{3}{2}} \right)^2} = \frac{{45}}{{16}}\).
Lời giải
Gọi \(x,y(xe)\) lần lượt là số xe loại \(A\) và \(B\) cần thuê.
Khi đó, số tiền cần bỏ ra để thuê xe là \(F(x;y) = 5x + 4y\) (triệu đồng)
Ta có \(x\) xe loại \(A\) chở được \(30x\) người và \(0,8x\) tấn hàng; \(y\) xe loại \(B\) chở được \(20y\) người và \(1,6y\) tấn hàng.
Suy ra \(x\) xe loại \(A\) và \(y\) xe loại \(B\) chở được \(30x + 20y\) người và \(0,8x + 1,6y\) tấn hàng.
Ta có hệ bất phương trình sau: \(\left\{ {\begin{array}{*{20}{l}}{30x + 20y \ge 180}\\{0,8x + 1,6y \ge 8}\\{0 \le x \le 10}\\{0 \le y \le 9}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3x + 2y \ge 18}\\{x + 2y \ge 10}\\{0 \le x \le 10}\\{0 \le y \le 9}\end{array}} \right.} \right.\) (*)
Bài toán trở thành tìm giá trị nhỏ nhất của \(F(x;y)\) trên miền nghiệm của hệ (*).
Miền nghiệm của hệ \((*)\) là tứ giác \(ABCD\) (kể cả bờ)
Tìm tọa độ các điểm \(A,B,C,D\).
Tọa độ điểm \(A\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{3x + 2y - 18 = 0}\\{y = 9}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 0}\\{y = 9}\end{array}} \right.} \right.\). Vậy \(A(0;9)\).
Tọa độ điểm \(B\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{3x + 2y - 18 = 0}\\{x + 2y - 10 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 4}\\{y = 3}\end{array}} \right.} \right.\). Vậy \(B(4;3)\).
Tọa độ điểm \(C\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 10}\\{x + 2y - 10 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 10}\\{y = 0}\end{array}} \right.} \right.\). Vậy \(C(10;0)\).
Tọa độ điểm \(D\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 10}\\{y = 9}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 10}\\{y = 9}\end{array}} \right.} \right.\). Vậy \(D(10;9)\).
Ta thấy \(F(x;y) = 5x + 4y\) đạt giá trị nhỏ nhất chỉ có thể tại các điểm \(A,B,C,D\).
Tại \(A(0;9)\) thì \(F = 36\) (triệu đồng).
Tại \(B(4;3)\) thì \(F = 32\) (triệu đồng).
Tại \(C(10;0)\) thì \(F = 50\) (triệu đồng).
Tại \(D(10;9)\) thì \(F = 86\) (triệu đồng).
Như vậy để chi phí thấp nhất cần thuê 4 xe loại \(A\) và 3 xe loại \(B\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.