Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm \(I\) và \(II\). Mỗi sản phẩm \(I\) bán lãi \(500\) nghìn đồng, mỗi sản phẩm \(II\) bán lãi \(400\) nghìn đồng. Để sản xuất được một sản phẩm \(I\) thì Chiến phải làm việc trong \(3\) giờ, Bình phải làm việc trong \(1\) giờ. Để sản xuất được một sản phẩm \(II\) thì Chiến phải làm việc trong \(2\) giờ, Bình phải làm việc trong \(6\) giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá \(180\) giờ và Bình không thể làm việc quá \(220\) giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương II (có lời giải) !!
Quảng cáo
Trả lời:
Chọn A
Gọi \(x\), \(y\) lần lượt là số sản phẩm loại \(I\) và loại \(II\) được sản xuất ra. Điều kiện \(x\), \(y\) nguyên dương.
Ta có hệ bất phương trình sau: \(\left\{ \begin{array}{l}3x + 2y \le 180\\x + 6y \le 220\\x > 0\\y > 0\end{array} \right.\)
Miền nghiệm của hệ trên là

Tiền lãi trong một tháng của xưởng là \(T = 0,5x + 0,4y\).
Ta thấy \(T\) đạt giá trị lớn nhất chỉ có thể tại các điểm \(A\), \(B\), \(C\). Vì \(C\) có tọa độ không nguyên nên loại.
Tại \(A\left( {60; 0} \right)\) thì \(T = 30\) triệu đồng.
Tại \(B\left( {40; 30} \right)\) thì \(T = 32\) triệu đồng.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Điều kiện: \(0 \le x \le 2;0 \le y \le 1,5\)
Khi đó số protein có được là \(800x + 600y\) và số lipit có được là \(200x + 400y\)
Vì gia đình đó cần ít nhất 1200 đơn vị protein và 800 đơn vị lipit trong thức ăn mỗi ngày nên điều kiện tương ứng là:
\(800x + 600y \ge 1200 \Leftrightarrow 4x + 3y \ge 6{\rm{ v\`a }}200x + 400y \ge 800 \Leftrightarrow x + 2y \ge 4\)
Ta có hệ bất phương trình sau:
\(\left\{ {\begin{array}{*{20}{l}}{0 \le x \le 2}\\{0 \le y \le 1,5}\\{4x + 3y \ge 6}\\{x + 2y \ge 4}\end{array}} \right.\)(*)

Miền nghiệm của hệ trên là miền ngũ giác \(ABCDE\) kể cả các cạnh của ngũ giác.
Chi phí để mua \(x\;kg\) thịt bò và \(y\;kg\) thịt lợn là \(T = 200x + 100y\) (nghìn đồng).
Bài toán trở thành tìm giá trị nhỏ nhất của \(T(x;y) = 200x + 100y\) trên miền nghiệm của hệ \((*)\).
Tìm tọa độ các điểm \(A,B,C,D,E\).
Tọa độ điểm \(A\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{4x + 5y - 6 = 0}\\{y = \frac{3}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = \frac{3}{8}}\\{y = \frac{3}{2}}\end{array}} \right.} \right.\). Vậy \(A\left( {\frac{3}{8};\frac{3}{2}} \right)\).
Tọa độ điềm \(C\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = 0}\end{array}} \right.\). Vậy \(C(2;0)\).
Tọa độ điểm \(D\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 2}\\{x + 2y - 4 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = 1}\end{array}} \right.} \right.\). Vậy \(D(2;1)\).
Tọa độ điểm \(E\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x + 2y - 4 = 0}\\{y = \frac{3}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = \frac{3}{2}}\end{array}} \right.} \right.\). Vậy \(E\left( {1;\frac{3}{2}} \right)\).
Ta thấy \(T(x;y) = 200x + 100y\) đạt giá trị nhỏ nhất chỉ có thể tại các điểm \(A,B,C,D,E\).
Tại \(A\left( {\frac{3}{8};\frac{3}{2}} \right)\) thì \(T = 200 \cdot \frac{3}{8} + 100 \cdot \frac{3}{2} = 225\) (nghìn đồng).
Tại \(B\left( {\frac{3}{2};0} \right)\) thì \(T = 200 \cdot \frac{3}{2} + 100 \cdot 0 = 300\) (nghìn đồng).
Tại \(C(2;0)\) thì \(T = 200.2 + 100.0 = 400\) (nghìn đồng).
Tại \(D(2;1)\) thì \(T = 200.2 + 100.1 = 500\) (nghìn đồng).
Tại \(E\left( {1;\frac{3}{2}} \right)\) thì \(T = 200.1 + 100 \cdot \frac{3}{2} = 350\) (nghìn đồng).
Như vậy để chi phí bỏ ra thấp nhất mà vẫn đảm bảo nhu cầu dinh dưỡng khi \(x = \frac{3}{8}\) và \(y = \frac{3}{2} \Rightarrow 4{x^2} + {y^2} = 4 \cdot {\left( {\frac{3}{8}} \right)^2} + {\left( {\frac{3}{2}} \right)^2} = \frac{{45}}{{16}}\).
Lời giải
Gọi \(x,y(ha)\) lần lượt là số \[ha\] trồng bắp và khoai lang.
Điều kiện \(0 \le x \le 4;0 \le y \le 4;x + y \le 4\); \(10x + 15y \le 45 \Rightarrow 2x + 3y \le 9\)
Số tiền thu được là \(T(x,y) = 2x + 2,5y\) (triệu đồng).
Ta có hệ \(\left\{ {\begin{array}{*{20}{l}}{0 \le x \le 4}\\{0 \le y \le 4}\\{x + y \le 4}\\{2x + 3y \le 9}\end{array}} \right.\)\((*)\)
Bài toán trở thành tìm giá trị lớn nhất của \(T(x;y) = 2x + 2,5y\) trên miền nghiệm của hệ \((*)\).

Tìm tọa độ các điểm \(O,A,B,C\).
Tọa độ điểm \(A\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 0}\\{2x + 3y - 9 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 0}\\{y = 3}\end{array}} \right.} \right.\). Vậy \(A(0;3)\).
Tọa độ điểm \(B\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x + y - 4 = 0}\\{2x + 3y - 9 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y = 1}\end{array}} \right.} \right.\). Vậy \(B(3;1)\).
Tọa độ điểm \(C\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x + y - 4 = 0}\\{y = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 4}\\{y = 0}\end{array}} \right.} \right.\). Vậy \(C(4;0)\).
Tọa độ điểm \(O(0;0)\).
Ta thấy \(T(x;y) = 2x + 2,5y\) đạt giá trị lớn nhất chỉ có thể tại các điểm \(O,A,B,C\).
Tại \(A(0;3)\) thì \(T = 2.0 + 2,5.3 = 7,5\) (triệu đồng).
Tại \(B(3;1)\) thì \(T = 2.3 + 2,5.1 = 8,5\) (triệu đồng).
Tại \(C(4;0)\) thì \(T = 2.4 + 2,5.0 = 8\) (triệu đồng).
Tại \(O(0;0)\) thì \(T = 2.0 + 2,5.0 = 0\) (triệu đồng).
Vậy cần trồng \(3ha\) bắp và \(1ha\) khoai lang để thu được số tiền nhiều nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
