Phần 3. Trắc nghiệm trả lời ngắn
Trong mỗi câu hỏi, thí sinh viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.
Cho bất phương trình \(3x - \left( {6 + 2x} \right) \le 5\left( {x + 4} \right)\). Biết nghiệm nhỏ nhất của bất phương trình có dạng \(\frac{a}{b}\) (với \(\frac{a}{b}\) là phân số tối giản có mẫu số dương). Tính giá trị biểu thức \(T = a + b.\)
Phần 3. Trắc nghiệm trả lời ngắn
Trong mỗi câu hỏi, thí sinh viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.
Cho bất phương trình \(3x - \left( {6 + 2x} \right) \le 5\left( {x + 4} \right)\). Biết nghiệm nhỏ nhất của bất phương trình có dạng \(\frac{a}{b}\) (với \(\frac{a}{b}\) là phân số tối giản có mẫu số dương). Tính giá trị biểu thức \(T = a + b.\)
Quảng cáo
Trả lời:
Giải bất phương trình:
\(3x - \left( {6 + 2x} \right) \le 5\left( {x + 4} \right)\)
\(3x - 6 - 2x \le 5x + 20\)
\(x - 6 \le 5x + 20\)
\(x - 5x \le 20 + 6\)
\( - 4x \le 26\)
\(x \ge \frac{{26}}{{ - 4}}\)
\(x \ge - \frac{{13}}{2}.\)
Như vậy, nghiệm nhỏ nhất của bất phương trình là \(x = - \frac{{13}}{2} = \frac{{ - 13}}{2}.\)
Theo bài, nghiệm nhỏ nhất của bất phương trình có dạng \(\frac{a}{b}\) (với \(\frac{a}{b}\) là phân số tối giản có mẫu số dương, nên \(a = - 13\) và \(b = 2.\)
Do đó, giá trị biểu thức \(T = a + b = - 13 + 2 = - 11.\)
Đáp án: −11.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Ta có: \(m\left( {2x + 1} \right) < 8\) nên \(2mx + m - 8 < 0\).
Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) khi \(2m \ne 0\) hay \(m \ne 0\).
b) Đúng. Khi \(m = 1,\) bất phương trình đã cho trở thành: \(2x - 7 < 0\) hay \(2x < 7\) nên \(x < \frac{7}{2}.\)
Như vậy, khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{7}{2}.\)
c) Sai. Khi \(m = - 1,\) bất phương trình đã cho trở thành: \( - 2x - 9 < 0\) hay \( - 2x < 9\) nên \(x > - \frac{9}{2}.\)
Như vậy, khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x > - \frac{9}{2}.\)
d) Sai. Khi \(m = - 2,\) bất phương trình đã cho trở thành: \( - 4x - 10 < 0\) hay \( - 4x < 10\) nên \(x > - \frac{5}{2}.\)
Khi đó, bất phương trình có nghiệm nguyên nhỏ nhất là \( - 2\).
Lời giải
Gọi \(x\,\,({\rm{km}})\) là quãng đường tối đa bạn Vân có thể đi được \(\left( {x > 0} \right)\).
Nhận thấy \(17\,\,600 \cdot 30 = 528\,\,000 < 700\,\,000\) nên với \(700\,\,000\) đồng, ta có thể đi được nhiều hơn \(30\,{\rm{km}}\).
Do đó ta có: \(11\,\,000 + 29 \cdot 17\,\,600 + \left( {x - 30} \right) \cdot 14\,\,500 \le 700\,\,000\)
\(521\,\,400 + \left( {x - 30} \right) \cdot 14\,\,500 \le 700\,\,000\)
\(\left( {x - 30} \right) \cdot 14\,\,500 \le 178\,\,600\)
\(x - 30 \le \frac{{1\,\,786}}{{145}}\)
\(x \le \frac{{6\,\,136}}{{145}} \approx 42,317...\)
Để \(x\) lớn nhất thì \(x - 30 = 12\) nên \(x = 42\).
Vậy quãng đường tối đa bạn Vân có thể đi được là \(42\,{\rm{km}}\).
Đáp án: 42.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[{a^2} < ab\] và \[{a^3} > {b^3}\].
B. \[{a^2} > ab\] và \[{a^3} > {b^3}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(7\,\,500x + 6\,\,000x < 85\,\,000\).
B. \(7500x + 6000x \ge 85\,\,000\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
