Câu hỏi:

10/10/2025 39 Lưu

Bạn Tiên dùng \(85\,\,000\) đồng đi mua vở: O10-2024-GV154 Loại 1 giá \(7\,\,500\) đồng/quyển, loại 2 giá \(6\,\,000\) đồng/quyển. Gọi \(x\) là số vở mỗi loại bạn mua thì bất phương trình lập được thể hiện mối quan hệ giữa số tiền Tiên mua và Tiên mang đi là

A. \(7\,\,500x + 6\,\,000x < 85\,\,000\).

B. \(7500x + 6000x \ge 85\,\,000\).

C. \(7\,\,500x + 6\,\,000x \le 85\,\,000\). 
D. \(7\,\,500x + 6\,\,000x = 85\,\,000\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Gọi \[x\] là số vở mỗi loại mà Tiên có thể mua nhiều nhất \(\left( {x \in \mathbb{N}*} \right).\)

Như vậy, tổng số tiền mua \(x\) quyển giá \(7\,\,500\) đồng và \(x\) quyển giá \(6\,\,000\) đồng nhỏ hơn hoặc bằng \(85\,\,000\) đồng hay \(7\,\,500x + 6\,\,000x \le 85\,\,000\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Ta có: \(m\left( {2x + 1} \right) < 8\) nên \(2mx + m - 8 < 0\).

Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) khi \(2m \ne 0\) hay \(m \ne 0\).

b) Đúng. Khi \(m = 1,\) bất phương trình đã cho trở thành: \(2x - 7 < 0\) hay \(2x < 7\) nên \(x < \frac{7}{2}.\)

Như vậy, khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{7}{2}.\)

c) Sai. Khi \(m =  - 1,\) bất phương trình đã cho trở thành: \( - 2x - 9 < 0\) hay \( - 2x < 9\) nên \(x >  - \frac{9}{2}.\)

Như vậy, khi \(m =  - 1,\) bất phương trình đã cho có nghiệm là \(x >  - \frac{9}{2}.\)

d) Sai. Khi \(m =  - 2,\) bất phương trình đã cho trở thành: \( - 4x - 10 < 0\) hay \( - 4x < 10\) nên \(x >  - \frac{5}{2}.\)

Khi đó, bất phương trình có nghiệm nguyên nhỏ nhất là \( - 2\).

Lời giải

Gọi \(x\,\,({\rm{km}})\) là quãng đường tối đa bạn Vân có thể đi được \(\left( {x > 0} \right)\).

Nhận thấy \(17\,\,600 \cdot 30 = 528\,\,000 < 700\,\,000\) nên với \(700\,\,000\) đồng, ta có thể đi được nhiều hơn \(30\,{\rm{km}}\).

Do đó ta có: \(11\,\,000 + 29 \cdot 17\,\,600 + \left( {x - 30} \right) \cdot 14\,\,500 \le 700\,\,000\)

\(521\,\,400 + \left( {x - 30} \right) \cdot 14\,\,500 \le 700\,\,000\)

\(\left( {x - 30} \right) \cdot 14\,\,500 \le 178\,\,600\)

\(x - 30 \le \frac{{1\,\,786}}{{145}}\)

\(x \le \frac{{6\,\,136}}{{145}} \approx 42,317...\)

Để \(x\) lớn nhất thì \(x - 30 = 12\) nên \(x = 42\).

Vậy quãng đường tối đa bạn Vân có thể đi được là \(42\,{\rm{km}}\).

Đáp án: 42.

Câu 4

A. \[{a^2} < ab\] và \[{a^3} > {b^3}\]. 

B. \[{a^2} > ab\] và \[{a^3} > {b^3}\].

C. \[{a^2} < ab\] và \[{a^3} < {b^3}\].
D. \[{a^2} > ab\] và \[{a^3} < {b^3}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[{x^2} + {y^2} = \frac{1}{2}.\] 
B. \[{x^2} + {y^2} < \frac{1}{2}.\] 
C. \[{x^2} + {y^2} \le \frac{1}{2}.\]  
D. \[{x^2} + {y^2} > \frac{1}{2}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP