Câu hỏi:

10/10/2025 36 Lưu

Phần 1. Trắc nghiệm nhiều phương án lựa chọn

Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Bất đẳng thức nào mô tả tình huống buổi sáng nhiệt độ \[t\,\,({\rm{^\circ C}})\] không thấp hơn \[12{\rm{^\circ C}}\]?

A. \[t < 12\].
B. \[t = 12\].
C. \[t \le 12\].  
D. \[t \ge 12\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Buổi sáng nhiệt độ \[t\,\,(^\circ C)\] không thấp hơn \[12^\circ C\] nghĩa là lớn hơn hoặc bằng 12 nên \[t \ge 12.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Ta có: \(m\left( {2x + 1} \right) < 8\) nên \(2mx + m - 8 < 0\).

Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) khi \(2m \ne 0\) hay \(m \ne 0\).

b) Đúng. Khi \(m = 1,\) bất phương trình đã cho trở thành: \(2x - 7 < 0\) hay \(2x < 7\) nên \(x < \frac{7}{2}.\)

Như vậy, khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{7}{2}.\)

c) Sai. Khi \(m =  - 1,\) bất phương trình đã cho trở thành: \( - 2x - 9 < 0\) hay \( - 2x < 9\) nên \(x >  - \frac{9}{2}.\)

Như vậy, khi \(m =  - 1,\) bất phương trình đã cho có nghiệm là \(x >  - \frac{9}{2}.\)

d) Sai. Khi \(m =  - 2,\) bất phương trình đã cho trở thành: \( - 4x - 10 < 0\) hay \( - 4x < 10\) nên \(x >  - \frac{5}{2}.\)

Khi đó, bất phương trình có nghiệm nguyên nhỏ nhất là \( - 2\).

Lời giải

Gọi \(x\,\,({\rm{km}})\) là quãng đường tối đa bạn Vân có thể đi được \(\left( {x > 0} \right)\).

Nhận thấy \(17\,\,600 \cdot 30 = 528\,\,000 < 700\,\,000\) nên với \(700\,\,000\) đồng, ta có thể đi được nhiều hơn \(30\,{\rm{km}}\).

Do đó ta có: \(11\,\,000 + 29 \cdot 17\,\,600 + \left( {x - 30} \right) \cdot 14\,\,500 \le 700\,\,000\)

\(521\,\,400 + \left( {x - 30} \right) \cdot 14\,\,500 \le 700\,\,000\)

\(\left( {x - 30} \right) \cdot 14\,\,500 \le 178\,\,600\)

\(x - 30 \le \frac{{1\,\,786}}{{145}}\)

\(x \le \frac{{6\,\,136}}{{145}} \approx 42,317...\)

Để \(x\) lớn nhất thì \(x - 30 = 12\) nên \(x = 42\).

Vậy quãng đường tối đa bạn Vân có thể đi được là \(42\,{\rm{km}}\).

Đáp án: 42.

Câu 4

A. \[{a^2} < ab\] và \[{a^3} > {b^3}\]. 

B. \[{a^2} > ab\] và \[{a^3} > {b^3}\].

C. \[{a^2} < ab\] và \[{a^3} < {b^3}\].
D. \[{a^2} > ab\] và \[{a^3} < {b^3}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[{x^2} + {y^2} = \frac{1}{2}.\] 
B. \[{x^2} + {y^2} < \frac{1}{2}.\] 
C. \[{x^2} + {y^2} \le \frac{1}{2}.\]  
D. \[{x^2} + {y^2} > \frac{1}{2}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP