Câu hỏi:

10/10/2025 23 Lưu

Để đo khoảng cách từ một điểm \(A\) trên bờ sông đến gốc cây \(C\) trên cù lao giữa sông, người ta chọn một điểm \(B\) cùng ở trên bờ với \(A\) sao cho từ \(A\) và \(B\) có thể nhìn thấy điểm \(C\). Ta đo được khoảng cách \(AB = 40\;m\), CAB^=45°,CBA^=70°. Vậy sau khi đo đạc và tính toán khoảng cách \(AC\) bằng bao nhiêu mét?

Để đo khoảng cách từ một điểm \(A\) trên bờ sông đến gốc cây \(C\) trên cù lao giữa sông, người ta chọn một điểm \(B\) cùng ở trên bờ với \(A\) sao cho từ \(A\) và \(B\) có thể nhìn thấy điểm \(C\). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Để đo khoảng cách từ một điểm \(A\) trên bờ sông đến gốc cây \(C\) trên cù lao giữa sông, người ta chọn một điểm \(B\) cùng ở trên bờ với \(A\) sao cho từ \(A\) và \(B\) có thể nhìn thấy điểm \(C\). (ảnh 2)

Ta có: C^=180°A^B^=65°

Áp dụng định lí sin vào tam giác \(ABC\) ta có

ACsinB=ABsinCAC=ABsinBsinC=40sin70°sin65°41,47 m

Vậy khoảng cách giữa \(A\) và \(C\) khoảng \(41,47m\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kẻ \(AK \bot BN;{A^\prime }H \bot BN\).

Thành phố Hải Đông dự định xây dựng một trạm nước sạch để cung cấp cho hai khu dân cư \(A\) và \(B\). (ảnh 2)

Gọi \({A^\prime }\) đối xứng với \(A\) qua \(MN,D\) là trung của \(NB\).

\(T = CA + CB = C{A^\prime } + CB \ge {A^\prime }B\) (không đổi). Đẳng thức xảy ra khi \(\{ C\}  = MN \cap {A^\prime }B\).

\(MN = AK = {A^\prime }H = \sqrt {A{B^2} - K{B^2}}  = \sqrt {{{(3\sqrt {37} )}^2} - {3^2}}  = 18\;km.\)

Vậy \({A^\prime }B = \sqrt {{A^\prime }{H^2} + H{B^2}}  = \sqrt {{{18}^2} + {9^2}}  = 9\sqrt 5  \simeq 20,12\;km\).

Lời giải

S=12absinCsinC=2Sab=2.333.4=32C^=60°

c=a2+b22abcosC=13;csinC=2RR=c2sinC=132sin60°=393

Câu 3

A. \(15\sqrt 2 \).        
B. \(30\sqrt 2 \).       
C. \(50\sqrt 3 \).                            
D. \(25\sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP