Câu hỏi:

10/10/2025 6 Lưu

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho tam giác \(ABC\) vuông tại \(A\); \(\widehat B = {30^{\rm{o}}}\). Khi đó:

a) \(\cos C = \frac{{\sqrt 3 }}{2}\).

b) \(\tan C = \sqrt 3 \).

c) \(\cot C = \frac{1}{{\sqrt 3 }}\).

d) \(\sin C = \frac{{\sqrt 3 }}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tam giác \(ABC\) vuông tại \(A\); \(\widehat B = {30^{\rm{o}}}\). Khi đó:  a) \(\cos C = \frac{{\sqrt 3 }}{2}\). (ảnh 1)

Ta có: \(\widehat C = {90^{\rm{o}}} - \widehat B = {60^{\rm{o}}}\).

Khi đó \(\cos C = \cos {60^{\rm{o}}} = \frac{1}{2} \ne \frac{{\sqrt 3 }}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Áp dụng định lí côsin cho tam giác \(ABC\), ta có: \(\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB \cdot AC}} = \frac{{{4^2} + {5^2} - {6^2}}}{{2.4.5}} = \frac{1}{8}\). Mà A^<180° nên \(\sin A = \sqrt {1 - {{\cos }^2}A}  = \sqrt {1 - \frac{1}{{64}}}  = \frac{{3\sqrt 7 }}{8}\)

Áp dụng định lí sin, ta có: \(\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{6}{{2 \cdot \frac{{3\sqrt 7 }}{8}}} \approx 3(\;cm)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{1}{2}\).     
B. \(\frac{{\sqrt 3 }}{2}\).                      
C. \(1\).                    
D. \( - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\sqrt {56} \).       
B. \(\sqrt {48} \).     
C. \(6\).                           
D. \(8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP