Câu hỏi:

10/10/2025 197 Lưu

Cho \(\alpha \) là góc tù và \(\sin \alpha = \frac{5}{{13}}\). Tính giá trị biểu thức \(3\sin \alpha + 2\cos \alpha \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

\({\cos ^2}\alpha  = 1 - {\sin ^2}\alpha  = \frac{{144}}{{169}} \Rightarrow \cos \alpha  =  \pm \frac{{12}}{{13}}\)

Do \(\alpha \) là góc tù nên \(\cos \alpha  < 0\), từ đó \(\cos \alpha  =  - \frac{{12}}{{13}}\)

Như vậy \(3\sin \alpha  + 2\cos \alpha  = 3 \cdot \frac{5}{{13}} + 2\left( { - \frac{{12}}{{13}}} \right) =  - \frac{9}{{13}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Sai

c) Sai

d) Đúng

Theo định lí cosin, ta có: \({c^2} = {a^2} + {b^2} - 2ab\cos C\)

\( = {(49,4)^2} + {(26,4)^2} - 2.49,4.26,4 \cdot \cos \left( {{{47}^0}{{20}^\prime }} \right) \approx 1369,66.{\rm{ }}\)

Suy ra: \(c \approx 37\;cm\).

Ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} \approx \frac{{{{\left( {26,4} \right)}^2} + 1369,66 - {{\left( {49,4} \right)}^2}}}{{2.26,4.37}} \approx  - 0,191 \Rightarrow \widehat A \approx 101^\circ \)

Ta có: \(\widehat B = 180^\circ  - \left( {\widehat A + \widehat C} \right) \approx 31^\circ 40'\)

Câu 4

A. \(2\sqrt 6 \).           
B. \(2 + 2\sqrt 3 \).  
C. \(2\sqrt 3 - 2\).                           
D. \(\sqrt 6 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\sqrt {56} \).       
B. \(\sqrt {48} \).     
C. \(6\).                           
D. \(8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP