Giá trị của biểu thức \(A = {\sin ^2}{51^{\rm{o}}} + {\sin ^2}{55^{\rm{o}}} + {\sin ^2}{39^{\rm{o}}} + {\sin ^2}{35^{\rm{o}}}\) là
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương III (có lời giải) !!
Quảng cáo
Trả lời:

Chọn D
\(A = \left( {{{\sin }^2}{{51}^{\rm{o}}} + {{\sin }^2}{{39}^{\rm{o}}}} \right) + \left( {{{\sin }^2}{{55}^{\rm{o}}} + {{\sin }^2}{{35}^{\rm{o}}}} \right) = \left( {{{\sin }^2}{{51}^{\rm{o}}} + {{\cos }^2}{{51}^{\rm{o}}}} \right) + \left( {{{\sin }^2}{{55}^{\rm{o}}} + {{\cos }^2}{{55}^{\rm{o}}}} \right) = 2\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
. Nên \(\Delta ABC\) cân tại \(C \Rightarrow AC = BC = 100\)
Trong tam giác vuông
Lời giải
a) Đúng |
b) Đúng |
c) Sai |
d) Sai |
a) Áp dụng định lí côsin trong tam giác \(ABC\), ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).
b) Góc \(A\) vuông khi và chỉ khi \({a^2} = {b^2} + {c^2}\);
c) Góc \(A\) nhọn khi và chỉ khi \(\cos A > 0\) hay \({b^2} + {c^2} - {a^2} > 0 \Leftrightarrow {a^2} < {b^2} + {c^2}\).
d) Góc \(A\) tù khi và chỉ khi \(\cos A < 0\) hay \({b^2} + {c^2} - {a^2} < 0 \Leftrightarrow {a^2} > {b^2} + {c^2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.