Câu hỏi:

10/10/2025 8 Lưu

Cho \[\Delta ABC\]\[AB = 9\];\[BC = 8\];\[\widehat {\rm{B}} = {60^0}\]. Tính độ dài \[AC\].

A. \[\sqrt {73} \].       
B. \[\sqrt {217} \].   
C. \[8\].                           
D. \[\sqrt {113} \].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Theo định lý cosin có:

\[A{C^2} = B{A^2} + B{C^2} - 2BA.BC.\cos \widehat {ABC} = 73\] \[ \Rightarrow AC = \sqrt {73} \].

Vậy \[AC = \sqrt {73} \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Sai

a) Áp dụng định lí côsin trong tam giác \(ABC\), ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).

b) Góc \(A\) vuông khi và chỉ khi \({a^2} = {b^2} + {c^2}\);

c) Góc \(A\) nhọn khi và chỉ khi \(\cos A > 0\) hay \({b^2} + {c^2} - {a^2} > 0 \Leftrightarrow {a^2} < {b^2} + {c^2}\).

d) Góc \(A\) tù khi và chỉ khi \(\cos A < 0\) hay \({b^2} + {c^2} - {a^2} < 0 \Leftrightarrow {a^2} > {b^2} + {c^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\sqrt 2 \).             
B. \(2\).                    
C. \( - 2\).                             
D. \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP